八下数学19.1.1变量与函数.docx_第1页
八下数学19.1.1变量与函数.docx_第2页
八下数学19.1.1变量与函数.docx_第3页
八下数学19.1.1变量与函数.docx_第4页
八下数学19.1.1变量与函数.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十九章 一次函数11.1 函数第一课时 19.1.1变量与函数1 教学目标1.1 知识与技能:1 掌握常量和变量、自变量和因变量(函数)基本概念; 2 了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系。1.2过程与方法 :1 引导学生联系代数式和方程的相关知识,继续探索数量关系,掌握常量和变量、自变量和因变量(函数)基本概念。1.3 情感态度与价值观 :1 通过实际问题,引导学生直观感知,领悟函数基本概念的意义。2 教学重点/难点2.1 教学重点1 借助简单实例,了解常量与变量的意义;理解函数概念和自变量的意义。2.2 教学难点1 函数概念的理解。3 教学方法谈话引入新知讲授巩固总结练习提高4教学用具多媒体课件,教学用直尺、三角板等。5 教学过程5.1创设情境【师】在学习与生活中,经常要研究一些数量关系,先看下面的问题。问题1 如图是某地一天内的气温变化图。 看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温。(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解 (1)这天的6时、10时和14时的气温分别为1、2、5;(2)这一天中,最高气温是5。最低气温是4;(3)这一天中,3时14时的气温在逐渐升高。0时3时和14时24时的气温在逐渐降低。从图中我们可以看到,随着时间t(时)的变化,相应地气温T()也随之变化。那么在生活中是否还有其它类似的数量关系呢?【生】举生活中的类似的数量关系。【师】现实世界中各种量之间的联系纷繁复杂,我们数学的研究方法是化繁就简,本节课就来学习生活中的变量与常量的关系。【板书】第十九章 一次函数 19.1 函数 第一课时变量与函数5.2 新知介绍1 问题1【师】银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的。解 随着存期x的增长,相应的年利率y也随着增长。2 问题2【师】收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的。下面是一些对应的数值:观察上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大,频率f 就_。解 (1) l 与 f 的乘积是一个定值,即lf300 000,或者说 。(2)波长l越大,频率f 就越小。3 问题3 圆的面积随着半径的增大而增大。如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S_。【师】利用这个关系式,试求出半径为1 cm、1.5 cm、2 cm、2.6 cm、3.2 cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_。解 Sr2。圆的半径越大,它的面积就越大。【师】在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律。这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量。例如,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值。像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable)。【师】上面各个问题中,都出现了两个变量,它们互相依赖,密切相关。一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量(independent variable),y是因变量(dependent variable),此时也称y是x的函数(function)。表示函数关系的方法通常有三种: (1)解析法,如问题2中的,问题3中的S r2,这些表达式称为函数的关系式。(2)列表法,如问题1中的利率表,问题3中的波长与频率关系表。(3)图象法,如气温曲线。问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant),如问题2中的300 000,问题3中的等。【板书】在某一变化过程中,可以取不同数值的量,叫做变量。在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数。函数关系的方法通常有三种: (1)解析法(2)列表法(3)图象法5.3实践应用1 例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解 (1)平均身高是146.1cm;(2)约从14岁开始身高增加特别迅速;(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量。2 例2 写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;(3)n边形的内角和S与边数n的关系式。解 (1)C2 r,2是常量,r、C是变量;(2)s60t,60是常量,t、s是变量;(3)S(n2)180,2、180是常量,n、S是变量。5.4交流反思1.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系。新课 标 第 一 网2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量。例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量。3.函数关系三种表示方法:(1)解析法;(2)列表法;(3)图象法。5.4检测反馈1.举3个日常生活中遇到的函数关系的例子。2.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是;(2)若直角三角形中的一个锐角的度数为,则另一个锐角(度)与间的关系式是90 ;(3)若某种报纸的单价为a元,x表示购买这种报纸的份数,则购买报纸的总价y(元)与x间的关系是:yax。3.写出下列函数关系式,并指出式中的自变量与因变量:(1)每个同学购一本代数教科书,书的单价是2元,求总金额Y(元)与学生数n(个)的关系;(2)计划购买50元的乒乓球,求所能购买的总数n(个)与单价a(元)的关系。7 板书设计第十九章 一次函数 19.1 函数 第一课时变量与函数一、三角形的高1.函数概念包含:(1)两个变量;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论