轴对称1.doc_第1页
轴对称1.doc_第2页
轴对称1.doc_第3页
轴对称1.doc_第4页
轴对称1.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

轴对称变换与坐标1试分别作出已知图形关于给定直线l的对称图形(1)图31(2)图32(3)图332如图34所示,已知平行四边形ABCD及对角线BD,求作BCD关于直线BD的对称图形(不要求写作法)图343如图35所示,已知长方形纸片ABCD中,沿着直线EF折叠,求作四边形EFCD关于直线EF的对称图形(不要求写作法)图354为了美化环境,在一块正方形空地上分别种植不同的花草,现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等,现已有两种不同的分法:分别作两条对角线 (图),过一条边的四等分点作该边的垂线段 (图),(图中的两个图形的分割看作同一种方法)请你按照上述三个要求,分别在图的三个正方形中,给出另外三种不同的分割方法(只画图,不写作法)图365已知:如图37,A、B两点在直线l的同侧,点A与A关于直线l对称,连接AB交l于P点,若ABa.(1)求APPB;(2)若点M是直线l上异于P点的任意一点,求证:AMMBAPPB图376已知:A、B两点在直线l的同侧,试分别画出符合条件的点M(1)如图38,在l上求作一点M,使得 AMBM 最小;作法:图38(2)如图39,在l上求作一点M,使得AMBM最大;作法:图39(3)如图310,在l上求作一点M,使得AMBM最小图3107(1)如图311,点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;图311(2)如图312,已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q (点P在点Q的左侧)且PQa,四边形APQB的周长最小图3128(1)已知:如图313,点M在锐角AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得PMQ的周长最小;图313(2)已知:如图314,点M在锐角AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小图3149按要求分别写出各对应点的坐标:已知点A(2,4)B(1,5)C(3,7)D(6,8)E(9,0)F(0,2)关于y轴的对称点A( )B( )C( )D( )E( )F( )关于x轴的对称点A( )B( )C( )D( )E( )F( )10已知:线段AB,并且A、B两点的坐标分别为 (2,1)和(2,3)(1)在图41中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标图41(2)在图42中分别画出线段AB关于直线x1和直线y4的对称线段A3B3及A4B4,并写出相应端点的坐标图4211如图43,已知四边形ABCD的顶点坐标分别为A (1,1),B (5,1),C (5,4),D (2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标12如图44,ABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ABD与ABC全等,求点D的坐标5如图45,在平面直角坐标系中,直线l是第一、三象限的角平分线实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A的坐标为 (2,0),请在图中分别标明B (5,3)、C (2,5)关于直线l的对称点B、C的位置,并写出它们的坐标:B_、C_;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a,b)关于第一、三象限的角平分线l的对称点P的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论