六年级数学思维训练教材_第1页
六年级数学思维训练教材_第2页
六年级数学思维训练教材_第3页
六年级数学思维训练教材_第4页
六年级数学思维训练教材_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档第一讲 立体图形及展开同学们在五年级所学习的立体图形主要是长方体和正方体,从这一讲开始我们将一起研究数学竞赛中经常出现的有关长方体和正方体的问题,帮助大家提高观察能力和空间想像能力,以及掌握解答问题的技巧和方法。这一讲我们进一步研究长方体和正方体的特征及展开图例题选讲例1:图1所示的是一个正方体纸盒拆开后平摊在桌面上的形状。如果将这个展开图恢复成原来的正方体,图中的点F、点G分别与哪个点重合?【分析与解答】为了研究方便,我们将正方体六个面分别标上序号1、2、3、4、5、6,如果将l作为底面,那么4就是后面,5为右面,6为前面,2则是左面,3就是上面,(如图2)。从图中不难看出点F与点N,重合,点G与点S重合。还有一种方法就是动手制作一张展开图,折一折,结果就一目了然了,同学们不妨试试吧!例2:一只小虫从图l所示的长方体上的A点出发,沿长方体的表面爬行,依次经过前面、上面、后面、底面,最后到达P点。请你为它设计一条最短的爬行路线。【分析与解答】 因为小虫在长方体的表面爬行,所以我们可以将长方体的前、后、上、下西个面展开成平面图形(如图2)。又因为在平面上“两点之间的线段长度最短”,所以连接AP,则线段AP为小虫爬行的最短路线。练习与思考1.如图所示的是一个正方体纸盒拆开后平摊在桌面上的形状。如果将这个展开图恢复成原来的正方体,图中的点B、点D分别与哪个点重合?2.如图所示的是一个棱长3厘米的正方体木块,一只蚂蚁从A点沿表面爬向B点。请画出蚂蚁爬行的最短路线。问:这样的路线共有几条?3.将一张长方形硬纸片,剪去多余部分后,折叠成一个棱长为l厘米的正方体。这张长方形硬纸片的面积最小是多少平方厘米? 4.一块长方形的铁皮,长28厘米,在这块铁皮的四角各剪下一个边长为4厘米的小正方形,然后通过折叠、焊接做成一个无盖的长方体盒子。已知这个盒子的容积是960立方厘米,求原来长方形铁皮的面积。5.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、c处填的数各是多少?第二讲 长方体和正方体的表面积在数学竞赛中,有许多问题涉及到长方体和正方体表面积的计算。这些知识不仅有趣而且具有一定的实用性和思考价值。解答长方体和正方体表面积的问题时,需要同学们具备较强的观察能力、作图能力以及空间想像能力,另外还要掌握一些解题的思路和技巧。例题选讲例1:一个长方体,前面和上面的面积之和是88平方厘米,这个长方体的长、宽、高是以厘米为单位的数,且都是质数,求这个长方体的表面积。 【分析与解答】要求长方体的表面积,就要求长方体的长、宽、高。根据题意,前面与上面的面积之和是88平方厘米,也就是长高+长x宽=88,即长(高+宽)=88因为长、宽、高都是质数,我们把88分解质因数得88=1l222,依题意,11不能分成两个质数和,经试验,有两种情况符合条件,(1)ll(3+5):88 (2)2(41+3)一88,因此长方体的表面积可以有两种情况。 解:88112X22,222:3+5,112241+3。长方体的表面积:(1)(113+1l5+53)2=206(平方厘米)(2)(23+2x4l+413)2422(平方厘米)例2:如图,将3个表面积都是24平方米的正方体木块粘成一个长方体,求这个长方体的表面积。【分析与解答】仔细观察图形,不难看出3个正方体块粘成1个长方体,共有2个粘接处,每一处都有2个面粘在一起,两处共粘去4个面,因此粘成的长方体的表面积等于(634)个面的面积,即246(6 x34)=56(平方厘米)。例3:如图所示的是用19个棱长为1厘米的正方体堆起来的立体图形,其中有一些正方体看不见,那么这个立体图形的表面积是多少?【分析与解答】仔细观察图形,虽然这个立体图形是不规则的,但是从前面看到的面与从后面看到的面个数是相等,同理从左、右看到的面个数是相等的,从上、下看到的面是一致的,所以这个立体图形的表面积等于(前面十上面+左面)2,即(10+9+8)2=54(平方厘米)。练习与思考1.有一个长方体,前面和上面两个面面积和为209平方厘米,并且长、宽、高都是以厘米为单位的数,且都是质数,求这个长方体的表面积。2.将两个长都是8厘米,6厘米,高都是5厘米的长方体拼成一个大长方体,那么这个大长方体表面积最大是多少平方厘米?3.如图所示的是由17个边长是1厘米的小正方体拼成的立体图形,求它的表面积。4.有一个长方体,长是8厘米,宽是4 厘米,高是6厘米,把它截成棱长是2厘米的若干个小正方体,这些小正方体表面积之和比原来长方体的表面积增加了多少平方厘米?第三讲 长方体和正方体的体积前一讲,我们研究了长方体和正方体表面积的计算,其实在数学竞赛中,有关长方体和正方体体积的知识也很重要。学习这一讲的知识更需要我们具备较强的观察能力和空间想像能力。 例题选讲例1:如图,一个长方体木块,从上部和卞靠分别截去高2厘米和3厘米的长方体后,便成为一个正方体,表面积减少了100平方厘米,原来长方体的体积是多少立方厘米?【分析与解答】仔细观察右图,截去上下两个长方体后减少的表面积就是两个长方体的侧面积,也就相当于减少的是高为(2+3)厘米的长方体的侧面积,因此高为5厘米的长方体每个侧面积是100425(平方厘米),那么长方体底面正方形的边长就是255=5(厘米),所以原长方体的体积是:55(2+5+3)=250(立方厘米)。例2:将两块棱长相等的正方体木块拼成一个长方体,已知长方体棱长总和是96厘米,每块正方体木块的体积是多少立方厘米? 【分析与解答】根据题意,两个正方体棱长共有122=24(条)。当它们拼在一起成为一个长方体时,由于两个面重合,也就减少了42=8(条)棱长,实际上就是拼成的长方体棱长总和相当于248=16(条)正方体棱长总和,因此每条正方体棱长为9616=6(厘米),则每块正方体木块的体积是:666=216(立方厘米)。例3:如图,正方体的棱长为4厘米,分别在前后、左右、上下各面中心凿开一个边长1厘米的正方形小孔直至对面,求它的体积。【分析与解答】仔细观察图形,每个凿去的小长方体体积均为:114=4(立方厘米),共凿小长方体3个,即43=12(立方厘米),而实际上由于正中间相交,重复凿去了2个1立方厘米的正方体小块,因此,这个物体的体积是44412+12=54(立方厘米)。练习与思考1 把一个长方体的长平均分成4段,每段长6厘米,表面积增加24平方厘米,求原长方体的体积。2 用大小相等的两个正方体积木拼成一个长方体,这个长方体的棱长总和是80厘米,每个正方体的体积是多少立方厘米? 3如图,在一个棱长为20厘米的正方体木块的前面、上面、右面中心位置,分别凿一个边长为4厘米的正方形小孔直至对面,做成玩具,求这个玩具的 4 一个长方体,它的前面和上面的面积之和是156平方厘米,并且长、宽、高都是质数,这个长方体的体积是多少?5一个表面积是36。平方厘米的长方体,它恰好可以切成两个相同的正方体,每个小正方体的体积是多少立方厘米?6 一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体的表面积之和是240平方厘米,求原来长方体的体积。第四讲 水面高度变化和等积变换水面高度变化问题是涉及长方体和正方体体积计算的变题,是指把一个物体放入盛水的长方体或正方体容器中,水面将上升;或者把一个物体从盛水的长方体和正方体容器中取出,水面会下降一类的问题。解答时,同学们要仔细观察水面高度变化的现象,发挥空间想像力,发现体积变化的规律,从而解决实际问题。等积变换问题指的是物体经过熔铸、变换,改造成另一种形状的物体,虽然形状变了,但是体积没有发生变化。解答时,应该抓住体积不变这一突口,再根据实际问题进行认真分析,从而寻求解决问题的方法。例题选讲例1:在一个长25分米,宽20分米的长方体容器中,有15分米深的水。如果在水中沉入一个棱长是50厘米的正方体铁块,那么容器中水深多少分米? 、【分析与解答】根据题意,正方体铁块沉入长方体容器中后,水面会上升,而上升部分的水的体积与正方体铁块的体积相等,因此就可以求出上升部分水的高度,那么现在的水深就迎刃而解了。 解:50厘米一5分米 5(25X20)+15 =O25+15 =1525(分米) 答:容器中水深1525分米。例2:一个长方体水箱,底面是一个边长为50厘米的正方形。水箱里直立着一个高10分米,底面边长是25厘米的长方体铁块,这时水箱里的水深6分米。现在把铁块轻轻地向上提起20厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?【分析与解答】露出水面的铁块上被水浸湿的部分包括向上提起的20厘米和铁块提起后水面下降的高度两部分。而下降部分水的体积就等于提起的20厘米的铁块的体积,因此水面下降的高度就可以用高20厘米的铁块体积除以水箱的底面积求得。 解:252520(5050)+20 =5+20 =25(厘米) 练习与思考1在一个长20分米,宽15分米的长方体容器中,有20分米深的水。现在在水中沉入一个棱长15分米的正方体铁块,这时容器中的水深多少分米?2一个长方体容器,长90厘米,宽40厘米。容器里直立着一个高1米,底面边长是15厘米的长方体铁块,这时容器里的水深05米。3一个棱长6分米的正方体容器,装满了水。现将正方体容器里的水倒人一个长12分米,宽6分米,高5分米的长方体水槽中,求现在长方体水槽中水面到水槽口的距离。4现在把铁块轻轻向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?5一个长方体水箱,从里面量长8分米,宽6分米。先倒入165升水,再浸入一块棱长3分米的正方体铁块,这时水面离水箱口1分米。问:这个水箱的容积是多少?6在一个长15分米,宽12分米的长方体容器中,水深10分米。如果在水中浸入一个棱长是30厘米的正方体铁块,那么,容器中水深多少分米? 7有大、中、小三个底面是正方形的水池,它们底面的边长分别是5米、3米、2米,把两堆碎石分别沉人中、小水池的水里,两个水池的水面分别升高6厘米和4厘米。如果将这两堆碎石都沉人大水池的水里,大水池的水面升高多少厘米?8一个长方体容器里面装有水,一块棱长24厘米的正方体铁块浸没在水中。现将铁块取出,水面下降18厘米;如果将一个长18厘米,宽16厘米,高12厘米的长方体铁块浸入水中:水面将上升多少厘米?第五讲 列方程解题有数量关系比较复杂的应用题,特别是需要逆向思维的应用题,运用算术方法解答比较困难,如果列方程解答,通过设未知数,把未知数当作已知数来考虑数量关系,抓住数量之间的相等关系,列出方程式解答就比较容易了。例题选讲例1:御苑小学五(3)班的同学合买一件生日礼物送给班主任。如果每人出8元,就多84元,如果每人出6元,那么就少12元,御苑小学五(3)班有多少名学生?【分析与解答】从给出的条件分析,用算术方法解答问题有些困难,似乎数量关系不明显,但深入分析可以看出同学们买的是同一件生日礼物,因比价格是一定的,即每人出8元表示的总价与每人出6元表示的总价相等,可以列出以下方程式解答。 解:设御苑小学五(3)班有x名学生。 8x-84=6x+12 8x一6x=12+84 2x=96 x=48 答:御苑小学五(3)班有48名学生。例2:胜利大队粮库里的大米是面粉的2倍,现在用卡车运走,每辆卡车装4吨大米和3吨面粉,当面粉运完时,还剩2 0吨大米,粮库里原来有大米和面粉共多少吨?【分析与解答】这道题的未知数量比较多:有大米、面粉的重量和卡车的数量,那么设哪个未知数为x比较合适呢?我们仔细分析一下等量关系,容易看出运大米的卡车数量与运面粉的卡车数量相等,如果设面粉有x吨,则大米有2x吨,根据卡车数量相等可以列出方程(2x一20)4=x3再进一步分析已知条件,可以看出另一个等量关系,即大米的重量等于面粉重量的2倍。我们设有x辆卡车,根据等量关系可列出方程:4x+20=3x2比较两种方法,发现后一种方法列出的方程式比较容易解答。练习与思考1爸爸带一些钱去买酸奶,如果买1 O瓶就剩下4元,如果买12瓶同样的酸奶则差5.2元。问:每瓶酸奶多少元?爸爸带了多少钱?2.滨江小学体育室里的篮球是足球的3倍。体育课上,每班借8只篮球、5只足球,足球借完时还有84只篮球。问:体育室原来有篮球和足球共多少只?。3.某校五、六年级的学生乘公交车去秋游。如果每车坐60人,则有20人没有座位;如果每车多坐5人,则有一辆车空出45个座位。请问:一共有多少辆公交车?五、六年级去秋游的学生一共有多少人? 4.一条船从甲港到乙港顺流丽下,再从乙港返回共用了8小时,已知这船在静水中的速度是每小时,20千米,水流速度是每小时5千米。请问:甲、乙两港之间的距离是多少千米?5.4个人的年龄之和是77岁,最小的是10岁,他与年龄最大的人的年龄之和比其他两人的年龄之和大7。问:年龄最大的人是多少岁? 6.一个两位数,十位数上的数字是个位上数字的15倍,如果调换十位与个位上的数字,则新数比原数小18,求原来的数。 7.甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙从A地出发,丙从B地出发,丙遇到乙以后2分钟又遇到甲,求A、B两地的距离。第六讲 假设法解题“假设法”是解决问题常用的一种思维方法,是指在解决问题的过程中,根据题目的条件或结论作出某种假设,然后根据假设进行推算,当出现矛盾时,则分析矛盾产生的原因,并对照已知条件进行适当调整,最后找到解决问题的方法。 例题选讲例1:有5元和10元的邮票共20张,总面值125元。问:5元的和10元的邮票各多少张?【分析与解答】假设20张邮票都是10元的,总面值应该是1020一200(元),而实际上只有125元,实际比假设少20012575(元),仔细分析一下为什么比假设少75元呢?原因就是把5元的邮票当作10元算的、,每张就多算10-5=5(元),因此可以求出5元的邮票张数755=15(张)则10元的邮票张数为2015=5(张)。 解:(1020125)(10一5) =755=15(张)5元的邮票张数 20-15=5(张)10元的邮票张数 答:5元的邮票15张,10元的邮票5张。 请同学想想如果假设2张邮票都是5元的应该如何解答呢? 例2:中央百货公司委托搬运公司送1000只茶杯,双方签订合同每只运费是O.3元如果打破1只,不但不付运费,而且还要照价赔偿15元。结果搬运公司共得运费291元。问:搬运公司在搬运过程中打破了几只茶杯?【分析与解答】 假设在搬运过程中没有茶杯被打破,那么应该得运费O3 x 1000=300(元),而实际上却少得了运费(300291)=9(元),原因是打破了几只茶杯,每打破1只不但拿不到运费,还要赔偿,所以打破1只就损失:03+15=18(元),因此在搬运过程中打破了918=5(只)。 解:(O3X1000291)(O3+15) =918 =5(只)答:在搬运过程中打破了5只茶杯。练习与思考1笼中共有鸡兔100只,鸡兔共有280只脚。问:鸡兔各有多少只?2某搬运站为某商店运800只花瓶,运费为每只3元,如果损坏一只,不但不给运费还要照价赔偿5元,结果搬运站共得运费2352元。问:搬运公司在搬运过程中打破几只花瓶?3松鼠爸爸采松子,晴天可以采30个,雨天只能采20个,它一连几天共采了240个松子,平均每天采24个。问:这几天当中有几个晴天?几个雨天?4甲、乙两人进行投飞镖比赛,规定每中一次记10分,脱靶一次扣6分,两人各投l0次,共得152分,其中甲比乙多16分。问:甲、乙两人各投中几次?5蜘蛛有8只脚,没有翅膀,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀,现在这三种小动物共78只脚,13对翅膀。问:每种小动物各有几只?6甲仓库存粮是乙仓库的2倍,甲仓库每天运出40吨,乙仓库每天运出30吨,若干天后,乙仓库的粮食运完了,甲仓库还有80吨。问:甲、乙两个仓库原来各有粮食多少吨?7一堆硬币:面值为1分、2分、5分三种,其中1分的个数是2分的ll倍,如果这堆硬币共1元,那么5分硬币有多少个? 8某班同学参加学校的数学竞赛,试题共50道。评分标准是:答对l题给3分,不答给1分,答错倒扣1分。请你说明:该班同学得分总和一定是偶数。 第七讲 代换法解题在一些较复杂的应用题中,经常会出现两个或两个以上的未知量,但是这些未知量是有一定的逻辑关系的。解题时,可以用其中一个未知量通过等量代换,代替其它未知量,从而使复杂的问题变得简单,这种解题的方法称为代换法。例题选讲例1:一个足球的价格等于两个篮球的价格,也等于三个排球的价格,还等于一个篮球加一个排球和一个垒球的价格。那么一个足球等于多少个垒球的价格?【分析与解答】这道题条件比较多,我们把条件摘录如下,列出等式:1个足球:2个篮球,1个足球=3个排球,一个足球=1个篮球+1个排球+1个垒球,由此可以推出2个篮球=3个排球,即1个篮球:15个排球,又1个篮球:1个排球+1个垒球,所以1个垒球一O5个排球,即2个垒球=1个排球,因此1个足球=23=6(个)垒球。例2:5只同样的红球和18只同样的绿球共重396克,已知1只红球和3只绿球的重量相等,求每只红球和每只绿球各重多少克?【分析与解答】摘录条件:(1)5只红球+18只绿球=396,(2)1只红球=3只绿球,由(2)可得5只红球=15只绿球,因此用15只绿球代替(1)中5只红球可得15只绿球+18只绿球=396,即33只绿球=396,所以每只绿球=396(15+18)=12(克),每只红球的重量=123=36(克)。 同学们想一想用几只同样的红球可以代换18只绿球,又如何计算呢?例3:甲、乙、丙三人,甲的年龄比乙的2倍大3岁,乙的年龄比丙的2倍小2岁,三人年龄之和是109岁。问:三人各几岁?【分析与解答】摘录条件(1)甲=2乙+3,(2)乙=2丙-2,由(2)可得2乙=4丙-4,又根据(1)可得甲=4丙=1,如果甲正好是丙的4倍,乙正好是丙的2倍,那么年龄和应是(109+l+2)=112(岁),也就相当于丙的(4+2+1)倍,因此丙的年龄=1127=16(岁)。乙的年龄:16X22=30(岁),甲的年龄=302+3=63(岁)。 练习与思考1.2只红球与4只蓝球的重量相等,3只蓝球的重量等于1只红球加1只黑球的重量,那么几只黑球的重量等于3只红球加4只蓝球的重量?2.百货商店运来400双球鞋,分别装在2个木箱和6个纸箱中,如果2个纸箱同1个木箱装的鞋一样多,那么每个木箱和每个纸箱各装多少双鞋? 3.有红、黄、蓝三色笔共94枝,已知红色笔比黄色笔的2倍少2枝,黄色笔比蓝色笔的2倍多4枝,求三色笔各多少枝?4.一批货物,如果用大号集装箱要20只箱子,如果用小号集装箱装,要25只箱子,已知大号箱比小号箱可多装货物200千克,求这批货物重多少千克? 5.学校图书馆购买5本科技书和3本文学书共用去1475元,如果用1本文学书换回2本科技书,那么还要用去73元。问:科技书和文学书每本的价格各是多少元?6.甲、乙、丙、丁四个数的和是325,如果甲加上lO,乙减去5,丙乘以2,丁除以3,那么四个数恰好相等,求丁数。7.甲、乙两数之差是1782,如果将乙的小数点向右移动两位就与甲数相等。求甲、乙两数分别是多少?第八讲 消去法解题有些较复杂的应用题,给出了两个或两个以上的未知量,在解题时除了运用前一讲代换法来解答,还可以运用另一种方法消去法。消去法解题是指在求多个未知量时,通过比较已知条件,分析对应未知数量的变化情况,设法消去其中一个未知量,使复杂问题简单化。例题选讲例1:妈妈第一次买了3千克苹果和5千克桔子,共用去145元;第二次又买了3千克苹果和7千克桔子,共用去185元。苹果和桔子的单价各是多少元?【分析与解答】根据已知条件写出下列数量关系式: 3千克苹果的价格+5千克桔子的价格=145元 3千克苹果的价格+7千克桔子的价格=185元 比较、两个等式,我们可以看出,145元与185元的差价正好是(75)千克桔子的价格。因为两次买的苹果重量相同,根据这个条件,在解答时可以把3千克苹果的价格消去,先求桔子的价格,再求苹果的价格。 解:(185145)(75) =42 =2(元)桔子的单价 (14525)3 =453 =15(元)苹果单价 答:苹果的单价是15元,桔子的单价是2元。例2: 紫金小学买了4个足球和12个篮球,一共用去980元,育才小学买了同样的8个足球和10个篮球,一共用去1 1 90元。每个足球和每个篮球各多少元?【分析与解答】先列出数量关系式。 4个足球的价钱十12个篮球的价钱=980元 8个足球的价钱+10个篮球的价钱=1190元 与例1比较、两个等式中没有相同数量的量,这样就不能直接消去其中的一个未知量。那怎么办呢?仔细观察比较、两个数量关系式,不难看出式中足球数量是式中足球数量的2倍,如果把式中未知量的数量扩大2倍,问题就迎刃而解了。 解:根据已知条件可得8个足球的价钱+24个篮球的价钱:1960元 (1960一1190)(24一lO) =77014 =55(元)篮球的单价 (9805512)4 =3204 =80(元)足球单价 答:每个足球80元,每个篮球55元。练习与思考1.食堂第一次运来6袋大米和4袋面粉,一共重400千克,第二次又运来9袋大米和4袋面粉,一共重550千克。每袋大米和每袋面粉各重多少千克?2.小明和小刚去商店买文具用品,小明买了1枝钢笔和2块橡皮共用去14元,小刚买同样的2枝钢笔和8块橡皮共用去36元。问:钢笔和橡皮的单价各是多少元?,3.文峰水果超市购买5筐苹果和7筐梨共重135千克,第二天又购买了同样的苹果3筐、梨5筐共重85千克。问:每筐苹果和每筐梨各多少千克?4.学校买来5包科技书和7包故事书共620本,6包科技书和3包故事书420本。问:每包科技书和每包故事书各多少本?第九讲 作图法解题图形具有直观性,用作图的方法可以将复杂应用题的数量关系直观地表示出来,使题目的已知条件和所求问题一目了然,并借助直观的图形进行分析、推理,进而很快找到解决问题的策略。这种方法我们称为作图法解题,特别是对解答条件复杂、数量关系不明显的应用题,能起到化难为易的作用。例题选讲例1:鸡与兔同笼共100只,一共有240只脚鸡与兔各多少只? 【分析与解答】这是鸡兔同笼问题,我们在前几讲已学会用其它方法解答,现在用作图法来解答,让同,学们体会一下这种方法的作用。图1中两个长方形的总面积表示的是鸡与兔脚的总个数,宽表示每只鸡与兔的脚的个数。则长就是要求的鸡与兔的只数。仔细观察图2,阴影部分的面积表示鸡与兔多出的脚,它应该等于总面积减空白面积,即2402 x 100=40(只),那么阴影部分的长,也就是兔的只数应为40(42)=20(只),鸡的只数就是1OO-20=80(只) 例2:甲、乙两车同时从A、B两地相向开出,第一次相遇时离A地有90千米,然后各按原速度继续行驶,到达目的地后立即沿原路返回,第二次相遇时离B地70千米处,求A、B两地的路程。【分析与解答】求A、B两地的路程,题中既没有给出甲、乙的速度,也没有给出相遇时间,解答比较困难。下面我们借助线段图来帮助分析。从图上可以看出,甲、乙两车从出发到第一次相遇共行驶了一个全程,当两车共行驶1个全程时,甲车行驶了90千米。从第一次相遇到第二次相遇,甲、两车又共行驶了2个全程。因此从出发到第l二次相遇甲、乙两车共行驶了3个全程,那么甲车就行驶了3个90千米,即903=270千米,而甲车比全程多行70千米。所以A、B的距离为27070=200(千米)。练习与思考 1.有10分和20分的邮票共18张,总面值为280元。请问:10分和20分的邮票各有几张?2.张红与李明同时从甲、乙两地相向而行,第一次两人相遇时离乙地400米。然后两人继续步行,各自到达目的地后立即返回,第二次相遇时离甲地200米,求甲、乙两地的距离。3.两根同样长的电线,第一根用去60 米,第二根用去20米,剩下的电线,第二根的长度是第一根的3倍。问:原来两根电线各长多少米?(先画图再列式计算)4.在一个除法算式里,被除除以除数商是25,余数是10,已知被除数、除数、商与余数的和是357,除数是多少? 5.甲、乙、丙、丁四个数,甲、乙、丙三个数的总和是300,丁数比甲、乙、丙、丁四个数的平均数少30,求丁数。6.甲、乙两车同时从A、B两地相向而行,第一次相遇时离A地50千米,相遇后继续按原速度行完全程,到达目的地后返回,第二次相遇时离A地25千米。问:A、B两地距离是多少千米?7.一辆汽车从甲地开往乙地,往返共用20小时,去时用的时间是回来时的15倍,去时的速度比回来的速度每小时慢12千米。问:往返共行了多少千米?第十讲 倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反。其实在数学中,也有许多类似的还原问题。解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案。例题选讲例1:有一群猴子分吃桃子,第一只拿走半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了。曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:32=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)2=18(个),第三只猴子拿之前应该有桃子:(183)2=30(个),第二只猴子拿之前应该有桃子:(30+3)2=66(个),第一只猴子拿之前应该有桃子:662=132(个),即这堆桃有132个。例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱。问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:482:24(元), 乙:48224(元), 丙:48+24+2496(元); 第二次在乙给甲、丙添钱之前: 甲:24212(元), 乙:24+12+48=84(元), 丙:962=48(元); 第一次在甲给乙、丙添钱之前: 甲:12+42+2478(元), 乙:842=42(元), 丙:482=24(元)。 所以开始时甲有78元,乙有42元,丙有24元。例3:甲、乙、丙三人共有48张邮票,第一次甲先拿出与乙的邮票数相等的张数给乙;第三次乙拿出与丙的邮票数相等的张数给丙;第三次丙又拿出与这时的甲的邮票数相等的张数给甲,最后三人的邮票数相等,三人原来各有多少张邮票?【分析与解答】此题条件复杂,因此我们可以用列表的方法,从最后的果一步步按每次的变化倒推,这样就容易看清题中的数量关系了。列表如下:练习与思考1.张强去银行取款,第一次取了存款的一半多100元,第二次取了余下的一半少50元,第三次取了余下的一半多50元,这时他的存折上还剩下575元。问:张强原来有存款多少元?2.书架上有上、中、下三层书,共2400本一先从上层拿出与中层同样多的书放进中层,再从中层拿出与下层同样多的书放进下层,最后从下层拿出与上层现在同样多的书放进上层,这时三层书同样多。问:开始时,上、中、下三层各有多少本书?3.做一道整数加一个学生把个位上的7看作5,把十位上的5看作7,把百位上的9看作6,结果得出和为775。问:正确的答案应该是多少?4.有26块砖,兄弟两人争着去挑,弟弟走在前面,刚摆好砖哥哥赶来了。哥哥见弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问:开始时,弟弟准备挑多少块?5.甲、乙、丙三个瓶子共装了24升水,现在把甲瓶的水分别倒给乙、丙两瓶,使乙、丙两瓶的水比原来增加1倍;之后,又将乙瓶的水按上面的要求倒给甲、丙;最后,再按上面的要求将丙瓶的水倒一部分给甲、乙两瓶,这样倒了三次后,三个瓶中的水一样多。问:开始时甲、乙、丙三瓶各装水多少升?第十一讲 分数大小的比较在分数计算中经常要比较分数的大小,同学们已经知道根据分数的基本性质,可以将两个异分子分母的分数变为分子相同或分母相同的情况进行比较。但在有些时候比较两个分数的大小,要根据分数的具体情况采取灵活的方法来比较它们的大小,这一讲我们就来研究比较分数大小的方法。例题选讲例1:比较 、和,这三个分数中最大的是哪一个分数?最小的是哪一个分数?【分析与解答】仔细观察这三个分数,分子、分母都不相同,如果把它们通分比较当然可以,但较麻烦。再看分5子,都是60的约数,因此可以根据分数的基本性质将这三个分数化成分子都是60的分数,再进行比较 解:=,=,= 因为 ,所以 ,即 最大, 最小。例3:比较右两个分数的大小:和。【分析与解答】观察这两个分数,它们的分子和分母都不相同,用分数的基本性质把它们变为分子相同或分母相同来比较都很麻烦。这时我们可以借助一个中间数“”作为“桥梁”进行间接比较。解:因为 ,而 ,所以。练习与思考1把下面各组中的分数按从大到小的 顺序排列: 、 2已知 ,( )中可以填人的最大整数是多少?最小整数是多少? 3比较下列两个分数的大小:和。 4比较和的大小。5写出三个大于而小于的最简真分数。6在分数、中,最大的是哪一个分数?最小的是哪一个分数?第十二讲 分数求和的解题技巧在数学竞赛中,常常遇到一些分数求和的问题。当然,这些求和的问题并不是只用一般通分的方法就能解决的。这一讲我们来研究一些特殊的分数求和的解题技巧。例题选讲例1:先观察下列各式的特点,找出规律再解答下列各题。(1)+ (2)+【分析与解答】仔细观察这两组算式,不难发现从第二个分数开始,每个分数都是前一个分数的一半,如果加上与它相同的分数就得到前面的分数了。因此我们可以借一个分数先加,最后再减去。如第(1)小题借 逐次往左递加就得到2个 ,最后第(1)题结果就是 2=同学们想一想,第(2)题该如何解答 ? 例2:从计算了前五道算式的结果中找出规律,填写出第六道算式的结果。+=1=+=2=+=1=+=3=+=2=+=?【分析与解答】上面六道算式是求分母为3、4、5、6、7、8的所有真分数的和。观察计算结果,不难发现分母增加1,结果就递增,如果每题结果都用2做分母,于是我就可以看出,分母是几的所有真分数的和都可以写成以2为分母,分子是比分母少1的分数。因此第六道算式的结果为 。练习与思考1计算下列各题:(1)+ (2)12计算:+3计算:1+2+4+256+5124(+)+(+)+(+)+(+)+ 第十三讲 平均数专题简析把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的输就是平均数。如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量总份数总数量=平均数总份数总份数=总数量平均数例1某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3,被改的数原来是多少?分析解答: 原来三个数的和是23=6,后来个数的和是33=9,9比6多出了3,是因为把那个数改成了4,因此,原来的数应该是4-3=1。33-23=34-3=1答:被改的数原来是1。随堂练习:1、已知九个数的平均数是72 ,去掉一个数后,余下数的平均数是78,去掉的数是多少?2、有五个数,平均数是9,如果把其中的一个数改为1,那么这五个数的平均数为8。这个改动的数原来是多少?例2把五个数从小到大排列,其平均数时38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少?分析解答: 先求五个数的和:385=190。在秋初前三个数的和:273=81,后三个数的和:483=144。用前三个数的和加上后三个数的和,这样,中间的那个书就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。 273+483-385=35答:中间一个数是35。随堂练习:1、甲、乙、丙三人的平均年龄为22岁,如果甲乙的平均年龄是18岁,乙丙的平均年龄是25岁,那么乙的年龄是多少岁?2、十名参赛者平均分是82分,前6人的平均分是83分,后6人的平均分是80分,那么第5人和第6人的平均分是多少分?拓展训练1、化肥厂在一星期前3天平均每天生产化肥250吨,后4天共生产化肥1126吨, 这个星期平均每天生产化肥多少吨?2、修一条渠,第一天修3小时,平均每小时修4.5千米;第二天修5小时,平均每小时修5.3千米,这两天平均每天修多少千米?平均每小时修多少千米?第十四讲 倍数问题(一) 专题分析:倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的和或者差以及几个数的倍数关系,求这几个数的应用题。 解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1倍数,再根据其他几个数与这个数的关系,确定“和”或者“差”相当于这样的几倍。最后用用除法求出1倍数。 和数(倍数1)较小数 差数(倍数1)较小数例1 两根同样长的铁丝,第一根剪去18米,第二根剪去26米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少米?分析解答:这两根铁丝的差保持不变,而剩下的铁丝的差依然是原来铁丝的差。根据余下的铁丝第一根是第二根的3倍。则余下的铁丝相差2倍。这样很容易计算第二根余下的铁丝是:(2618)(31)4(厘米)则原第二根铁丝长30厘米。随堂练习:1、两根绳子一样长,第一根用去6.5米,第二根用去0.9米,剩下部分第二根是第一根的3倍。两根绳子原来各长多少米?2、一筐苹果和一筐梨的个数相同,卖掉40个苹果和5个梨后,剩下的梨是苹果的6倍。原来两筐水果一共有多少个?例2 甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。原来甲组有图书多少本?分析解答:甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6318(本),则甲组仍是乙组的3倍,事实上甲组不但没有拿出18本,反而接受了乙组的6本,这样24本正好对应后来两组的(532)倍。因此后来乙组的图书是:(636)(53)12(本)。则原来乙组为18本,甲组就是18354(本)。随堂练习:1、原来小明的画片是小红的3倍,后来二人个买了5张,这样小明的画片就是小红的2倍。原来二人各有多少张画片?2、一个书架分上下两层,上层的书的本数是下层的4倍,从下层拿出5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?拓展训练1、幼儿园买来的苹果的个数是 梨的3倍,吃掉10个梨和6个苹果后,还有苹果正好是梨的5倍。原来买来苹果和梨共多少个?2、两个数的和是682,其中一个数的个位是0,如果把这个0去掉,就得到另一个数。这两个数各是多少? 第十五讲 倍数问题(二) 例1 幼儿园买来苹果的个数是梨的2倍,如果每组领3个梨和4个苹果,结果梨正好分完,苹果还剩16个。两种水果原来各有多少个?分析解答:因为苹果是梨的2倍,如果每组领梨3个,领苹果就应为6个,这样才会一起分完。可实际每组只分4个苹果,少分2个,剩下的16个苹果就告诉我们有8个组。因此苹果的个数是:841648(个),梨有24个。随堂练习:同学们带着水果去看敬老院的老人,带的苹果是橘子的3倍,如果每位老人拿2个橘子和4个苹果,那么,橘子正好分完,苹果还多14个。问同学们把苹果分给了几位老人? 例2 有两筐橘子,如果从甲筐拿出8个放进乙筐,两筐的橘子就同样多;如果从乙筐拿出13个放到甲筐,甲筐里的橘子是乙筐的2倍。甲乙两筐原来各有多少个橘子?分析解答:“如果从甲筐拿出8个放进乙筐,两筐的橘子就同样多;”表示两筐橘子相差16个,“如果从乙筐拿出13个放到甲筐,”表示现在两筐的橘子差距是1613242(个)“甲筐里的橘子是乙筐的2倍”说明现在倍数差是211(倍),这样就可以计算现在乙筐的橘子数是:42142(个)则原来就是55个。甲筐的计算就容易了。随堂练习:甲乙仓库存有货物,若从甲仓库取31吨放入乙仓库,则两仓库存货物同样多;若乙仓库取14吨放入甲仓库,则甲仓库的货物是乙仓库的4倍。原来两仓库各存货物多少吨? 拓展训练1、养鸡场新买来100只小鸡,其中,母鸡只数的4倍比公鸡只数的3倍多120只。买来母鸡、公鸡各多少只?思路:题中已知母鸡和公鸡只数的和是100只,就可以计算它们的4倍是400只。又因为母鸡只数的4倍比公鸡只数的3倍多120只,从400只去掉120只,就是公鸡只数的7倍,则公鸡的只数是40只,母鸡就是60只。2、有两块地共有80公顷,第一块地的3倍比第二块地的2倍少10公顷。这两块地各有多少公顷?3、养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡的只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡?思路:养鸡场原来母鸡的只数是公鸡的6倍,如果公鸡增加60只,则母鸡应增加360只,这样才能保证母鸡是公鸡的6倍,实际上母鸡只增加了60只,少增加的300只就是母鸡只数是公鸡只数的4倍。所以现在的公鸡数是:60(61)(64)150(只)原来的总数为:(15060)(16)630(只)。4、今年,爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍。今年小明多少岁?练习七:第十六讲 假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。例1 有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张?分析解答:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30(105)6(张)。也可以假设有14张10元的随堂练习:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。问2分和5分的银币各有多少枚?3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。求换来的这两种人民币各多少张?例2 有一元、二元、五元的人民币50张,总面值为116元。已知一元的比二元的多2张,问三种面值的人民币各有多少张?分析解答:如果减少2张一元的,那么,总张数就是48张,总面值就是114元,这样一元和二元的张数就同样多了。假设48张都是5元的,则总面值为240元,比实际多了126元,这126元不仅包括把一元的假设为5元,而且包括把二元的假设为5元,这样在两张5元中就多了7元。所以二元的就有18张,一元的就有20张,五元的有12张。随堂练习:1、有3元、5元和7元的电影票400张,一共价值1920元。其中7元的和5元的张数相等,三种价值的电影票各有多少张?2、有一元、五元、十元的人民币共14张,总计66元,其中一元的比十元的多2张,问三种人民币各有多少张?3、有1角、2角、4角、5角的邮票共26张,总计6.9元。其中,1角和2角的张数相等,4角和5角的张数相等。求这四张邮票各有多少张?拓展练习1、有黑白棋子一堆,其中黑子个数是白子个数的2倍。如果从这堆棋子中每次取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子余18个?思路:假设每次取出3个白子,黑子应取出6个,那么白子剩下1个时,黑子应剩下2个。而实际剩下了18个,是因为每次少取了2个黑子。所以取了(18)(64)8(次)。2、有黑白棋子一堆,其中黑子个数是白子个数的3倍。如果从这堆棋子中每次同时取出黑子6个,白子3个,那么取了多少次后,白子余5个,黑子余36个?第十七讲 作图法解题专

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论