




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八节直线与圆锥曲线 总纲目录 教材研读 1 直线与圆锥曲线位置关系的判断 考点突破 2 直线与圆锥曲线相交的弦长问题 3 弦ab的中点与直线ab斜率的关系 考点二弦长问题 考点一直线与圆锥曲线位置关系的判定及应用 考点三中点弦问题 1 直线与圆锥曲线位置关系的判断判断直线l与圆锥曲线r的位置关系时 通常将直线l的方程ax by c 0 a b不同时为0 与圆锥曲线r的方程f x y 0联立 消去y 也可以消去x 得到一个关于变量x 或变量y 的方程 即联立消去y 或x 后得ax2 bx c 0 或ay2 by c 0 1 当a 0时 若 0 则直线l与曲线r相交 若 0 则直线l与曲线r相切 若 0 则直线l与曲线r相离 教材研读 2 当a 0时 得到一个一次方程 则直线l与曲线r相交 且只有一个交点 此时 若r为双曲线 则直线l与双曲线的 渐近线平行 若r为抛物线 则直线l与抛物线的 对称轴平行或重合 1 椭圆的切线 1 椭圆 1 a b 0 上一点p x0 y0 处的切线方程是 1 2 过椭圆 1 a b 0 外一点p x0 y0 所引两条切线的切点弦所在直线方程是 1 3 椭圆 1 a b 0 与直线ax by c 0相切的条件是a2a2 b2b2 c2 圆锥曲线的切线方程 2 双曲线的切线方程 1 双曲线 1 a 0 b 0 上一点p x0 y0 处的切线方程是 1 2 过双曲线 1 a 0 b 0 外一点p x0 y0 所引两条切线的切点弦所在直线方程是 1 3 双曲线 1 a 0 b 0 与直线ax by c 0相切的条件是a2a2 b2b2 c2 3 抛物线的切线方程 1 抛物线y2 2px p 0 上一点p x0 y0 处的切线方程是y0y p x x0 2 抛物线y2 2px p 0 外一点p x0 y0 所引两条切线的切点弦所在直线方程是y0y p x x0 3 抛物线y2 2px p 0 与直线ax by c 0相切的条件是pb2 2ac 直线l过抛物线的焦点 抛物线方程以y2 2px p 0 为例 那么 ab x1 x2 p 3 弦ab的中点与直线ab斜率的关系 1 已知ab是椭圆 1 a b 0 的一条弦 其中点m的坐标为 x0 y0 运用点差法求直线ab的斜率 设a x1 y1 b x2 y2 x1 x2 a b都在椭圆上 两式相减得 0 0 故kab 2 已知ab是双曲线 1 a 0 b 0 的一条弦 且a x1 y1 b x2 y2 x1 x 2 弦中点m x0 y0 则与 1 同理可知kab 3 已知ab是抛物线y2 2px p 0 的一条弦 且a x1 y1 b x2 y2 x1 x2 弦中点m x0 y0 则两式相减得 2p x1 x2 y1 y2 y1 y2 2p x1 x2 即kab 1 直线y kx k 1与椭圆 1的位置关系为 a 相交b 相切c 相离d 不确定 答案a由于直线y kx k 1 k x 1 1过定点 1 1 又 1 1 在椭圆内 故直线与椭圆必相交 a 2 直线y x 3与双曲线 1的交点个数是 a 1b 2c 1或2d 0 答案a因为直线y x 3与双曲线的渐近线y x平行 所以它与双曲线只有1个交点 a 3 双曲线c 1 a 0 b 0 的右焦点为f 直线l过焦点f 且斜率为k 则直线l与双曲线c的左 右两支都相交的充要条件是 a k b k或k d k 答案d由双曲线的渐近线的几何意义知 k d 4 2015北京怀柔一中3月模拟 已知直线l x y m 0经过抛物线c y2 2px p 0 的焦点 直线l与抛物线c交于a b两点 若 ab 6 则p的值为 a b c 1d 2 答案b由得x2 2m 2p x m2 0 设a x1 y1 b x2 y2 则x1 x2 2m 2p 又直线l x y m 0经过抛物线c y2 2px p 0 的焦点 0 m 0 解得m 又 ab x1 x2 x1 x2 p 2m 3p 4p 6 p 故选b b 5 过点 0 1 作直线 使它与抛物线y2 4x仅有一个公共点 这样的直线有条 答案3 3 典例1在平面直角坐标系xoy中 已知椭圆c1 1 a b 0 的左焦点为f1 1 0 且点p 0 1 在c1上 1 求椭圆c1的方程 2 设直线l同时与椭圆c1和抛物线c2 y2 4x相切 求直线l的方程 考点一直线与圆锥曲线位置关系的判定及应用 考点突破 方法技巧 1 判断直线与圆锥曲线的交点个数时 可直接求解相应方程组得到交点坐标 也可利用消元后的一元二次方程根的判别式来确定 需注意利用判别式的前提是二次项系数不为0 2 依据直线与圆锥曲线的交点个数求参数时 联立方程并消元 得到一元方程 此时注意观察方程的二次项系数是否为0 若为0 则方程为一次方程 若不为0 则将方程解的个数转化为判别式与0的大小关系求解 1 1若直线y kx 2与双曲线x2 y2 6的右支交于不同的两点 那么k的取值范围是 a b c d d 答案d由消去y 得 1 k2 x2 4kx 10 0 直线与双曲线右支交于不同的两点 解得 k 1 1 2若直线l y a 1 x 1与曲线c y2 ax恰好有一个公共点 试求实数a的取值集合 解析因为直线l与曲线c恰好有一个公共点 所以方程组有唯一一组实数解 消去y 得 a 1 x 1 2 ax 整理得 a 1 2x2 3a 2 x 1 0 1 当a 1 0 即a 1时 方程 是关于x的一元一次方程 解得x 1 这时 原方程组有唯一解 2 当a 1 0 即a 1时 方程 是关于x的一元二次方程 判别式 3a 2 2 4 a 1 2 a 5a 4 令 0 解得a 0或a 当a 0时 原方程组有唯一解当a 时 原方程组有唯一解综上 实数a的取值集合是 令 2m2 4 m2 2 0 解得 2 m 2 设a x1 y1 b x2 y2 方法技巧弦长的求解 1 当弦的两端点坐标易求时 可直接利用两点间的距离公式求解 2 当直线的斜率存在时 斜率为k的直线l与圆锥曲线c相交于a x1 y1 b x2 y2 两个不同的点 则弦长 ab x1 x2 y1 y2 k 0 3 当弦过焦点时 可结合焦半径公式求解弦长 2 1如图 在平面直角坐标系xoy中 椭圆 1 a b 0 的离心率为 过椭圆右焦点f作两条互相垂直的弦ab与cd 当直线ab的斜率为0时 ab 4 1 求椭圆的方程 2 若 ab cd 求直线ab的方程 解析 1 由题意知e 2a 4 又a2 b2 c2 解得a 2 b c 1 所以椭圆方程为 1 2 当两条弦中的一条弦所在直线的斜率为0时 另一条弦所在直线的斜率不存在 由题意知 ab cd 7 不满足条件 当两条弦所在直线的斜率均存在且不为0时 设直线ab的方程为y k x 1 a x1 y1 b x2 y2 则直线cd的方程为y x 1 将直线ab的方程代入椭圆方程中并整理得 3 4k2 x2 8k2x 4k2 12 0 则x1 x2 x1 x2 所以 ab x1 x2 同理 cd 所以 ab cd 解得k 1 所以直线ab的方程为x y 1 0或x y 1 0 典例3抛物线c的顶点为原点 焦点在x轴上 直线x y 0与抛物线c交于a b两点 若p 1 1 为线段ab的中点 则抛物线c的方程为 a y 2x2b y2 2xc x2 2yd y2 2x 考点三中点弦问题 b 方法技巧处理中点弦问题的常用方法 1 点差法 设出弦的两端点坐标后 代入圆锥曲线方程 并将两式相减 式中含有x1 x2 y1 y2 三个未知量 这样就直接联系了中点和直线的斜率 借用中点公式即可求得斜率 2 根与系数的关系 联立直线与圆锥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤气化过程中的合成气冷却与液化工艺考核试卷
- 报纸与舆论引导考核试卷
- 搬运设备安装与调试考核试卷
- 稀土金属冶炼的智能研发协同与知识管理解决方案考核试卷
- 工业自动化中的安全决策支持考核试卷
- 白酒与教育产业的合作与互补考核试卷
- 护理电子病历书写规范
- 管件成型工艺研究考核试卷
- 砼结构施工中的季节性施工措施考核试卷
- 小学科学7 噪声的危害与防治教案设计
- 2025届江苏省南京市高三语文一模作文题目审题立意及高分范文:弯道与陡坡
- 2025年浙江长征职业技术学院单招职业技能考试题库含答案
- 浙江绍兴职业技术学院招聘真题2024
- 2024年高级经济师《工商管理》考试真题
- 浙江省外国语实验学校2025届中考化学模拟试卷含解析
- 精神疾病治疗新靶点-深度研究
- 教学课件-统计学(第三版)袁卫
- 湖北省武汉市2024-2025学年高三下学期2月调研考试英语试题(含解析无听力原文及音频)
- 医院保安员培训
- CNAS-CL01:2018 检测和校准实验室能力认可准则
- 依法执业与医疗安全培训课件
评论
0/150
提交评论