【名师一号】高中数学 第三章 统计案例单元同步测试(含解析)新人教A版选修23.doc_第1页
【名师一号】高中数学 第三章 统计案例单元同步测试(含解析)新人教A版选修23.doc_第2页
【名师一号】高中数学 第三章 统计案例单元同步测试(含解析)新人教A版选修23.doc_第3页
【名师一号】高中数学 第三章 统计案例单元同步测试(含解析)新人教A版选修23.doc_第4页
【名师一号】高中数学 第三章 统计案例单元同步测试(含解析)新人教A版选修23.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【名师一号】2014-2015学年高中数学 第三章 统计案例单元同步测试(含解析)新人教a版选修2-3 (时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求)1两个变量x与y的回归模型中分别选择了4个不同模型,它们的相关指数r2如下,其中拟合效果最好的模型是()a模型1的相关指数r2为0.98b模型2的相关指数r2为0.80c模型3的相关指数r2为0.50d模型4的相关指数r2为0.25答案a2一位母亲记录了儿子39岁的身高,由此建立的身高与年龄的回归模型为7.19x73.93,用这个模型预测这孩子10岁时的身高,则正确的叙述是()a身高一定是145.83 cmb身高在145.83 cm以上c身高在145.83 cm以下d身高在145.83 cm左右答案d3下列关系中:吸烟有害健康;粮食产量与施肥量;名师出高徒;乌鸦叫,没好兆不具有相关关系的是()abc d答案d4下列说法正确的个数是()对事件a与b的检验无关时,即两个事件互不影响事件a与b关系密切,则k2就越大k2的大小是判定事件a与b是否相关的唯一根据若判定两个事件a与b有关,则a发生b一定发生a1 b2c3 d4解析两个事件检验无关,只是说明两事件的影响较小;而判断两个事件是否相关除了公式外,还可以用二维条形图等方法来判断;两个事件有关,也只是说明一个事件发生时,另一个事件发生的概率较大,但不一定必然发生综上分析知,只有正确答案a5预报变量的值与下列哪些因素有关()a受解释变量的影响与随机误差无关b受随机误差的影响与解释变量无关c与总偏差平方和有关与残差无关d与解释变量和随机误差的总效应有关答案d6为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x(cm)174176176176178儿子身高y(cm)175175176177177则y对x的线性回归方程为()ayx1 byx1cy88x dy176解析由于176,176,代入选项知, c正确答案c7在回归分析中,残差图中的纵坐标为()a残差 b样本编号c. d.n答案a8身高与体重的关系可以用()来分析()a残差分析 b回归分析c二维条形图 d独立检验答案b9想要检验是否喜欢参加体育活动是不是与性别有关,应该检验()a男性喜欢参加体育活动b女性不喜欢参加体育活动c喜欢参加体育活动与性别有关d喜欢参加体育活动与性别无关解析依据反证法原理可知d正确答案d10在一次对人体脂肪含量和年龄关系的研究中,研究人员获得一组样本数据:年龄2327394145495053565860脂肪9.517.821.225.927.526.328.229.631.433.535.2通过计算得到回归方程为0.577x0.448,利用这个方程,我们得到年龄37岁时体内脂肪含量为20.90%,那么数据20.90%的意义是()a某人年龄37岁,他体内脂肪含量为20.90%b某人年龄37岁,他体内脂肪含量为20.90%的概率最大c某人年龄37岁,他体内脂肪含量的期望值为20.90%d20.90%是对年龄为37岁的人群中的大部分人的体内脂肪含量所作出的估计答案d11变量x、y具有线性相关关系,当x的取值为8,12,14和16时,通过观测知y的值分别为5,8,9,11,若在实际问题中,y的预报值最大是10,则x的最大取值不能超过()a16 b15c17 d12解析因为x16时,y11;当x14时,y9,所以当y的最大值为10时,x的最大值应介于区间(14,16)内,所以选b.答案b12为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,得到下面列联表: 数学物理85100分85分以下合计85100分378512285分以下35143178合计72228300现判断数学成绩与物理成绩有关系,则判断的出错率为()a0.5% b1%c2% d5%解析由表中数据代入公式得k24.5143.84.所以有95%把握认为数学成绩与物理成绩有关,因此,判断出错率为5%.答案d二、填空题(本大题共4小题,每小题5分,满分20分请把答案填在题中横线上)13已知一个回归方程为1.5x45,x1,5,7,13,19,则_.解析9,1.594558.5.答案58.514对有关数据的分析可知,每一立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压度y(单位:kg/cm2)之间具有线性相关关系,其线性回归方程为0.30x9.99.根据建设项目的需要,28天后混凝土的抗压度不得低于89.7 kg/cm2,每立方米混凝土的水泥用量最少应为_kg.(精确到0.1 kg)解析由题意得89.70.30x9.99,解之得x265.7.答案265.715有甲、乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:优秀不优秀总计甲班103545乙班73845总计177390利用列联表的独立性检验估计,则成绩与班级_(填有关或无关)解析成绩与班级有无关系,就是看随机变量的值与临界值2.706的大小关系由公式得k20.6532.706,成绩与班级无关系答案无关16“回归”一词是在研究子女的身高与父母的身高之间的遗传关系时,由高尔顿提出的,他的研究结果是子代的平均身高向中心回归根据他的理论,在儿子的身高y与父亲的身高x的线性回归方程x中,的取值范围是_解析子代的身高向中心回归,父母身高越高,子女越高,因此03.841,故有95%的把握认为性别与参加运动有关18(12分)抽测了10名15岁男生的身高x(单位:cm)和体重y(单位:kg),得到如下数据:x157153151158156159160158163164y45.544424644.54546.5474549(1)画出散点图;(2)你能从散点图中发现身高与体重近似成什么关系吗?(3)如果近似成线性关系,试画出一条直线来近似的表示这种关系解(1)散点图如图所示:(2)从图中可知当身高增大时,体重也增加,身高与体重成线性相关关系(3)如图,散点在某一条直线附近19(12分)为了调查某生产线上,某质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品982件,次品8件;甲不在现场时,510件产品中合格品493件,次品17件试分别用列联表、独立性检验的方法对数据进行分析解(1)22列联表如下:产品正品数次品数总数甲在现场9828990甲不在现场49317510总数1475251500由列联表看出|acbd|982174938|12750,即可在某种程度上认为“甲在不在场与产品质量有关”(2)由22列联表中数据,计算k213.09710.828所以,约有99.9%的把握认为“质量监督员甲在不在现场与产品质量有关”20(12分)已知x,y之间的一组数据如表:x13678y12345(1)从x,y中各取一个数,求xy10的概率;(2)对于表中数据,甲、乙两同学给出的拟合直线分别为yx1与yx,试判断哪条直线拟合程度更好?解(1)从x,y中各取一个数组成数对(x,y),共有5525(对),其中满足xy10的数对有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5)共9对故所求的概率为.(2)用yx1作为拟合直线时,所得y值与y的实际值的差的平方和为:s1(1)2(22)2(33)2(4)2(5)2;用yx作为拟合直线时,所得y值与y的实际值的差的平方和为:s2(11)2(22)2(3)2(44)2(5)2.s1s2,用yx作为拟合直线时,拟合程度更好21(12分)期中考试后,对某班60名学生的成绩优秀和不优秀与学生近视和不近视的情况做了调查,其中成绩优秀的36名学生中,有20人近视,另外24名成绩不优秀的学生中,有6人近视(1)请列出列联表并画出等高条形图,并判断成绩优秀与患近视是否有关系;(2)能否在犯错误的概率不超过0.025的前提下认为成绩优秀与患近视之间有关系?解(1)列联表如下:近视不近视总计成绩优秀201636成绩不优秀61824总计263460等高条形图如下图所示由图知成绩优秀与患近视有关(2)由列联表中的数据得到k2的观测值k5.4755.024.因此,在犯错误的概率不超过0.025的前提下认为成绩优秀与患近视有关22(12分)研究“刹车距离”对于安全行车及分析交通事故责任都有一定的作用,所谓“刹车距离”就是指行驶中的汽车,从刹车开始到停止,由于惯性的作用而又继续向前滑行的一段距离为了测定某种型号汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得的数据如表:刹车时的车速(km/h)0102030405060刹车距离(m)00.31.02.13.65.57.8(1)以车速为x轴,以刹车距离为y轴,在给定坐标系中画出这些数据的散点图;(2)观察散点图,估计函数的类型,并确定一个满足这些数据的函数表达式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5 m,请推测刹车时的速度为多少?请问在事故发生时,汽车是超速行驶还是正常行驶?解(1)散点图如图表示:(2)由图象,设函数的表达式为yax2bxc(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论