八年级数学上册 第12章 整式的乘除小结与复习课件 (新版)华东师大版.ppt_第1页
八年级数学上册 第12章 整式的乘除小结与复习课件 (新版)华东师大版.ppt_第2页
八年级数学上册 第12章 整式的乘除小结与复习课件 (新版)华东师大版.ppt_第3页
八年级数学上册 第12章 整式的乘除小结与复习课件 (新版)华东师大版.ppt_第4页
八年级数学上册 第12章 整式的乘除小结与复习课件 (新版)华东师大版.ppt_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第12章整式的乘除 要点梳理 考点讲练 课堂小结 课后作业 小结与复习 1 幂的运算法则 要点梳理 am n amn anbn 不变 相乘 相加 不变 相乘 乘方 不变 相减 底数 指数 相加 相乘 乘方 相减 am n 注意 1 其中的a b代表的不仅可以是单独的数 单独的字母 还可以是一个任意的代数式 2 这几个法则容易混淆 计算时必须先搞清楚该不该用法则 该用哪个法则 2 整式的乘法单项式与单项式相乘 把它们的 分别相乘 对于只在一个单项式中出现的字母 则连同它的指数一起作为积的一个 单项式与多项式相乘 用和的每一项分别相乘 再把所得的积 多项式与多项式相乘 先用一个多项式的与另一个多项式的相乘 再把所得的积 系数 相同字母的幂 因式 单项式 多项式 相加 每一项 每一项 相加 3 乘法公式 平方和 这两数积 a2 b2 a2 2ab b2 二 完全相同 互为相反数 二 平方差 二 平方 三 平方和 加上 积 两 a b 2ab 2ab 4ab 点拨 1 乘法公式实际上是一种特殊形式的多项式的乘法 公式的主要作用是简化运算 2 公式中的字母可以表示数 也可以表示其他单项式或多项式 a2 4 整式的除法 1 单项式除以单项式单项式相除 把 分别相除作为商的 对于只在被除式中出现的字母 则连同它的指数一起作为商的一个 2 多项式除以单项式多项式除以单项式 先把这个多项式的每一项除以这个 再把所得的商 点拨 多项式除以单项式实质上是用计算法则转化为单项式除以单项式 系数 同底数幂 因式 因式 单项式 相加 5 因式分解的意义把一个多项式化成几个整式的的形式 叫做多项式的因式分解 因式分解的过程和的过程正好相反 6 用提公因式法分解因式公因式的确定 公因式的系数应取多项式各项整数系数的 字母取多项式各项的字母 各字母指数取次数最的 一般地 如果多项式的各项都含有公因式 可以把这个公因式提到外面 将多项式写成的形式 这种分解因式的方法叫做提公因式法 注意 提公因式法是因式分解的首选方法 在因式分解时先要考虑多项式的各项有无公因式 积 整式乘法 最大公约数 相同 低 括号 因式乘积 7 用公式法分解因式把反过来 可以把符合公式特点的多项式分解因式 这种分解因式的方法叫做公式法 这两个公式是 1 逆用平方差公式 2 逆用两数和 差 的平方公式 点拨 这里的两个公式是用来分解因式的 与乘法公式刚好左右互换 运用公式分解因式 首先要对所给的多项式的项数 次数 系数和符号进行观察 判断符合哪个公式的条件 公式中的字母可表示数 字母 单项式或多项式 只有符合公式的特征时才能运用公式 乘法公式 a b a b a2 b2 a2 2ab b2 a b 2 8 因式分解的步骤 1 如果多项式的各项有公因式 那么先 2 在各项提出公因式后或各项没有公因式的情况下 观察多项式的次数 二项式可以尝试运用公式分解因式 三项式可以尝试运用公式分解因式 3 分解因式必须分解到每一个因式在指定的范围内都不能为止 9 图形面积与代数恒等式很多代数恒等式 如平方差公式 两数和 差 的平方公式等 都可以用平面几何图形的来说明其正确性 方法是把图形的面积用不同的方式表示 根据列出的代数式 然后得到代数恒等式 提取公因式 平方差 两数和 差 的 再分解 面积 相等 考点讲练 例1计算 1 2a 3 b3 2 4a3b4 2 8 2016 0 125 2015 解析 1 幂的混合运算中 先算乘方 再算乘除 2 可以先用同底数幂的乘法的逆运算 将 8 2016化为 8 8 2015 再用积的乘方的性质的逆运算进行计算 答案 1 原式 8a3b6 4a3b4 2a3 3b6 4 2b2 2 原式 8 8 2015 0 125 2015 8 8 0 125 2015 8 1 2015 8 幂的运算性质包括同底数幂的乘法 幂的乘方 积的乘方及同底数幂的除法 这四种运算性质贯穿全章 是整式乘除及因式分解的基础 其逆向运用可将问题化繁为简 负数乘方结果的符号 奇次方得负 偶次方得正 1 下列计算不正确的是 a 2a3 a 2a2b a3 2 a6c a4 a3 a7d a2 a4 a8 d 2 计算 0 252015 4 2015 8100 0 5301 解 原式 0 25 4 2015 23 100 0 5300 0 5 1 2 0 5 300 0 5 1 0 5 1 5 解 420 42 10 1610 1610 1510 420 1510 3 比较大小 420与1510 例2计算 x x2y2 xy y x2 x3y 3x2y 其中x 1 y 3 解析 在计算整式的加 减 乘 除 乘方的运算中 一要注意运算顺序 二要熟练正确地运用运算法则 解 原式 x3y2 x2y x2y x3y2 3x2y 2x3y2 2x2y 3x2y 当x 1 y 3时 原式 整式的乘除法主要包括单项式乘以单项式 单项式乘以多项式 多项式乘以多项式以及单项式除以单项式 多项式除以单项式 其中单项式乘以单项式是整式乘除的基础 必须熟练掌握它们的运算法则 整式的混合运算 要按照先算乘方 再算乘除 最后算加减的顺序进行 有括号的要算括号里的 4 一个长方形的面积是a2 2ab a 宽为a 则长方形的长为 5 已知多项式2x3 4x2 1除以一个多项式a 得商为2x 余式为x 1 则这个多项式是 a2 2b 1 例3先化简 再求值 x y 2 x y x y 2x 其中x 3 y 1 5 解析 运用平方差公式和完全平方公式 先算括号内的 再进行整式的除法运算 解 原式 x2 2xy y2 x2 y2 2x 2x2 2xy 2x x y 当x 3 y 1 5时 原式 3 1 5 1 5 整式的乘法公式包括平方差公式和完全平方公式 而完全平方公式又分为两个 两数和的完全平方公式和两数差的完全平方公式 在计算多项式的乘法时 对于符合这三个公式结构特征的式子 运用公式可减少运算量 提高解题速度 6 求方程 x 1 2 x 1 x 1 3 1 x 0的解 解 x2 9y2 4x 6y 5 0 x2 4x 4 9y2 6y 1 0 x 2 2 3y 1 2 0 x 2 0 3y 1 0 解得x 2 y 7 已知x2 9y2 4x 6y 5 0 求xy的值 解 原方程可化为 5x 5 0 解得x 1 例4判断下列各式变形是不是分解因式 并说明理由 1 a2 4 3a a 2 a 2 3a 2 a 2 a 5 a2 3a 10 3 x2 6x 9 x 3 2 4 3x2 2xy x x 3x 2y 2 解 1 不是 因为最后不是做乘法运算 不是积的形式 2 不是 因为从左边到右边是做乘法运算 3 是 4 不是 因为令x 2 y 1 左边 10 右边 32 不是恒等变形 解析 1 多项式的因式分解的定义包含两个方面的条件 第一 等式的左边是一个多项式 其二 等式的右边要化成几个整式的乘积的形式 这里指等式的整个右边化成积的形式 2 判断过程要从左到右保持恒等变形 因式分解是把一个多项式化成几个整式的积的形式 它与整式乘法互为逆运算 分解因式的方法主要是提公因式法和公式法 因式分解时 一般要先提公因式 再用公式法分解 因式分解要求分解到每一个因式都不能再分解为止 8 下列变形 是因式分解的是 a a x y ax ayb x2 4xy y2 1 x x 4y y 1 y 1 c am2 a a m 1 m 1 d m2 9n2 3 m 3n m 3n 3 c 转化思想 例5计算 1 2a 3a2b3 2 2x 5 x2 6x3 解析 1 单项式乘以单项式可以转化为有理数的乘法和同底数幂的乘法 2 多项式乘以单项式可以转化为单项式乘以单项式 解 1 原式 2 原式 2x 6x3 5 6x3 x2 6x3 12x4 30 x3 6x5 将要解决的问题转化为另一个较易解决的问题 这是初中数学中常用的思想方法 如本章中 多项式 多项式单项式 多项式单项式 单项式有理数的乘法和同底数幂的乘法 9 计算 4a b 2b 2 解 原式 4a b 4b2 16ab2 4b3 整体思想 例6若2a 5b 3 0 则4a 32b 解析 已知条件是2a 5b 3 0 无法求出a b的值因此可以逆用积的乘方先把4a 32b 化简为含有与已知条件相关的部分 即4a 32b 22a 25b 22a 5b 把2a 5b看做一个整体 因为2a 5b 3 0 所以2a 5b 3 所以4a 32b 23 8 8 在本章中应用幂的运算法则 乘法公式时 可以将一个代数式看做一个字母 这就是整体思想 应用这种思想方法解题 可以简化计算过程 且不易出错 10 若xn 5 则 x3n 2 5 x2 2n 12500 11 若x y 2 则 2 例7如图所示 在边长为a的正方形中剪去边长为b的小正方形 把剩下的部分拼成梯形 分别计算这两个图形的阴影部分的面积 验证公式是 数形结合思想 a2 b2 a b a b 解析 通过图形面积的计算 验证乘法公式 从图形中的阴影部分可知其面积是两个正方形的面积差 a2 b2 又由于图的梯形的上底是是2b 下底是2a 高为a b 所以梯形的面积是 2a 2b a b 2 a b a b 根据面积相等 得乘法公式a2 b2 a b a b 本章中数形结合思想主要体现在根据给定的图形写出一个代数恒等式或根据代数式画出几何图形 由几何图形得到代数恒等式时 需要用不同的方法表示几何图形的面积 然后得出代数恒等式 由代数恒等式画图时 关键在于合理拼接 往往是相等的边拼到一起 12 我们已知道 完全平方公式可以用平面几何图形的面积来表示 实际上还有一个代数恒等式也可以用这种形式来表示 例如 2a b a b 2a2 3ab b2 就可以用图 和图 等图形的面积表示 图 2 请画一个几何图形 使它的面积能表示 a b a 3b a2 4ab 3b2 1 请写出图 所表示的代数恒等式 图 答案 1 2a b a 2b 2a2 5ab 2b2 2 如图 13 有若干张如图 1 所示的正方形和长方形卡片 如果要拼一个长为 2a b 宽为 a b 的长方形 则需要a类卡片 张 b类卡片 张 c类卡片 张 请你在图 2 的大长方形中画出一种拼法 1 2 2 1 3 14 图 是一个长为2a 宽为2b的长方形 沿图中虚线剪开 可分成四块小长方形 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论