用待定系数法求二次函数的解析式.docx_第1页
用待定系数法求二次函数的解析式.docx_第2页
用待定系数法求二次函数的解析式.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时用待定系数法求二次函数的解析式教学目标1掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式2能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,对称轴,最值和增减性3能根据二次函数的解析式画出函数的图象,并能从图象上观察出函数的一些性质重点二次函数的解析式和利用函数的图象观察性质难点利用图象观察性质教学设计一、复习引入1抛物线y2(x4)25的顶点坐标是_,对称轴是_,在_侧,即x_4时,y随着x的增大而增大;在_侧,即x_4时,y随着x的增大而减小;当x_时,函数y最_值是_2抛物线y2(x3)26的顶点坐标是_,对称轴是_,在_侧,即x_3时,y随着x的增大而增大;在_侧,即x_3时,y随着x的增大而减小;当x_时,函数y最_值是_二、例题讲解例1根据下列条件求二次函数的解析式:(1)函数图象经过点A(3,0),B(1,0),C(0,2);(2)函数图象的顶点坐标是(2,4),且经过点(0,1);(3)函数图象的对称轴是直线x3,且图象经过点(1,0)和(5,0)说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷例2已知函数yx22x3,(1)把它写成ya(xh)2k的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图象交x轴于A,B两点,交y轴于P点,求APB的面积;(6)根据图象草图,说出x取哪些值时,y0;y0?说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图象判定函数值何时为正,何时为负,同样也要充分利用图象,要使y0抛物线开口向_a0抛物线对称轴在y轴的_侧b0抛物线对称轴是_轴0抛物线与y轴交于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论