高考数学解题思想方法-参数法.doc_第1页
高考数学解题思想方法-参数法.doc_第2页
高考数学解题思想方法-参数法.doc_第3页
高考数学解题思想方法-参数法.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。、再现性题组:1. 设2351,则2x、3y、5z从小到大排列是_。2. (理)直线上与点A(-2,3)的距离等于的点的坐标是_。 (文)若k0时,f(x)0,则f(x)的R上是_函数。(填“增”或“减”)6. 椭圆1上的点到直线x2y0的最大距离是_。 A. 3 B. C. D. 2【简解】1小题:设235t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y2x5z;2小题:(理)A(-2,3)为t0时,所求点为t时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a1,c,所以e;3小题:设zb,则C1b2,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则xy6、yz4、xz3,所以xyz24,体积为4。5小题:f(0)0,f(0)f(x)f(-x),所以f(x)是奇函数,答案:减;6小题:设x4sin、y2cos,再求d的最大值,选C。、示范性题组:例1. 实数a、b、c满足abc1,求abc的最小值。【分析】由abc1 想到“均值换元法”,于是引入了新的参数,即设at,bt,ct,代入abc可求。【解】由abc1,设at,bt,ct,其中ttt0, abc(t)(t)(t)(ttt)tttttt所以abc的最小值是。【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:abc(abc)2(abbcac)12(abc),即abc。两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。例2. 椭圆1上有两点P、Q,O为原点。连OP、OQ,若kk , 求证:|OP|OQ|等于定值; .求线段PQ中点M的轨迹方程。【分析】 由“换元法”引入新的参数,即设(椭圆参数方程),参数、为P、Q两点,先计算kk得出一个结论,再计算|OP|OQ|,并运用“参数法”求中点M的坐标,消参而得。【解】由1,设,P(4cos,2sin),Q(4cos,2sin),则kk,整理得到:cos cossin sin0,即cos()0。 |OP|OQ|16cos4sin16cos4sin812(coscos)206(cos2cos2)2012cos()cos()20,即|OP|OQ|等于定值20。由中点坐标公式得到线段PQ的中点M的坐标为,所以有()y22(cos cossin sin)2,即所求线段PQ的中点M的轨迹方程为1。【注】由椭圆方程,联想到ab1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M点的坐标后,将所得方程组稍作变形,再平方相加,即(cos cos)(sinsin),这是求点M轨迹方程“消参法”的关键一步。一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x、y坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。本题的第一问,另一种思路是设直线斜率k,解出P、Q两点坐标再求:设直线OP的斜率k,则OQ的斜率为,由椭圆与直线OP、OQ相交于PQ两点有:,消y得(14k)x16,即|x|;,消y得(1)x16,即|x|;所以|OP|OQ|()()20。即|OP|OQ|等于定值20。在此解法中,利用了直线上两点之间的距离公式|AB|xx|求|OP|和|OQ|的长。 S E D C O F A B例3.已知正四棱锥SABCD的侧面与底面的夹角为,相邻两侧面的夹角为,求证:cos=-cos。【分析】要证明cos=-cos,考虑求出、的余弦,则在和所在的三角形中利用有关定理求解。【解】连AC、BD交于O,连SO;取BC中点F,连SF、OF;作BESC于E,连DE。则SFO,DEB。 设BCa (为参数), 则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论