人教A版选修2-1第二章第2节《椭圆及其标准方程》的教学设计.doc_第1页
人教A版选修2-1第二章第2节《椭圆及其标准方程》的教学设计.doc_第2页
人教A版选修2-1第二章第2节《椭圆及其标准方程》的教学设计.doc_第3页
人教A版选修2-1第二章第2节《椭圆及其标准方程》的教学设计.doc_第4页
人教A版选修2-1第二章第2节《椭圆及其标准方程》的教学设计.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

椭圆及其标准方程(人教A选修2-1第二章第二节)一、教学设计内容和内容解析(1)内容 椭圆是常见的曲线,通过对引言及日常生活的体验,学生对椭圆已经有了一定的认识.本节将在此基础上,引导他们具体学习椭圆的定义、椭圆的标准方程的推导.本节是继直线与圆的方程之后,用坐标法研究曲线和方程的又一次实际演练.(2)内容解析圆锥曲线是高中数学中十分重要的内容之一.它的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用.本节是圆锥曲线与方程的第一节课,主要学习椭圆的定义和标准方程.它是本章也是整个解析几何部分的重要基础知识,原因如下:第一,在教材结构上,本节内容起到一个承上启下的重要作用.一方面,前面学生用坐标法研究了直线和圆,而对椭圆概念与方程的研究是坐标法的深入,另一方面,椭圆、双曲线、抛物线无论是定义、性质、方程还是坐标法运用上都有很多相似之处,可以说学习椭圆就是学习其他圆锥曲线的基础.第二,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想.而这种思想,将贯穿于整个高中阶段的数学学习.第三,对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础.目标和目标解析(1)目标 通过观察、实验、证明等方法的运用,让学生能够理解椭圆的定义,掌握椭圆标准方程的两种形式,并根据条件会求椭圆的标准方程.通过对椭圆的认识及其方程的推导,使学生的分析、探究、抽象、概括等逻辑思维能力得到一定提高,用坐标法解决圆锥曲线问题的能力得到加强.鼓励学生积极、主动的参与教学的整个过程,激发其求知的欲望.(2)目标解析椭圆及其标准方程是圆锥曲线的基础,它的学习方法对圆锥曲线这一章具有导向和引领作用,直接影响其他圆锥曲线的学习,它是后继学习的基础和示范.同时,也是求曲线方程的深化和巩固.因此,学生对椭圆定义的理解,直接影响到他们对后续双曲线及抛物线定义的理解,又因为对椭圆定义的学习及其标准方程的推导过程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材,所以让学生理解椭圆的定义及标准方程的推导,成为本节课的重点.另外,让学生集体参与、主动参与,让学生动手、动脑,通过观察、猜想、归纳等合情推理,鼓励学生多向思维、积极活动、勇于探索.所以,在平等的教学氛围中,让学生体验数学学习的成功与快乐,增加学生的求知欲和自信心;培养学生不怕困难、勇于探索的优良作风,增强学生审美体验,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度成为本节课要达成的情感目标.教学重点:椭圆的定义、椭圆标准方程的推导教学问题诊断分析(1)教学的第一个问题是椭圆是怎样画出的,椭圆中存在的等量关系是什么,定义中要有什么样的约束条件?解决方案:可通过两定点距离、绳长与图形的关系,通过操作,完善定义;利用三角形中的两边之和大于第三边,两边之差小于第三边原理,完善定义.(2)教学的第二个问题是平面直角坐标系怎么建立可以使得标准方程变得简单.解决方案:引导学生类比“圆心在原点及不在原点的圆的方程的求解过程”得到建系的方法.(3)教学的第三个问题是椭圆标准方程的推导与化简中含有两个根式的等式化简.解决方案:由于用两边同时平方法化简较为繁琐,有些学生完成可能的有困难,老师要及时加以指导.(4)教学的第四个问题可能是焦点在Y轴上的椭圆方程的得出.解决方案:可以利用类比“化归”的思想,通过翻折和旋转的方式实现图形变换,从而利用焦点在轴上椭圆的标准方程得到焦点在轴上椭圆的标准方程,避免繁琐、重复的推导过程.教学难点:椭圆标准方程的推导教学支持条件分析动手切割圆锥形的事物,结合教材中的课后阅读材料,让学生了解圆锥曲线名称的来历及圆锥曲线的样子.对椭圆定义的引入,可借助多媒体辅助工具及实物模型,直观形象的进行展示,让学生从感性认识入手,逐步上升到理性认识,进而形成正确的概念.借助绳子及图钉等作为教具,动手绘制椭圆,通过演示,让学生掌握椭圆绘制方法并从中理解椭圆定义的实质.注意椭圆的定义与椭圆的标准方程的联系.推导椭圆的标准方程时,可利用多媒体辅助工具,让学生类比圆的方程的求解方法,得到求椭圆标准方程的建系方法.利用多媒体辅助翻转图形,启发学生得到焦点在y轴上的椭圆的标准方程.然后,鼓励学生探索椭圆的两种标准方程的异同点,进一步加深对椭圆的认识.合理利用实物展台,对学生所获得的经验进行展示,引导学生积极参与学习活动,培养学生的好奇心和学习兴趣;体验学习数学的成功与快乐,增强自信心.教学过程 (一)直观感受,形象体会把装有咖啡的圆柱形杯子适度倾斜,让学生观察水面所形成的图形.动手切割圆锥形的胡萝卜,让学生观察切片的形状.多媒体辅助:圆及其水平放置的直观图,椭圆形状的实物.得出结论椭圆,教材中的课后阅读材料,介绍“圆锥曲线”名称的由来.设计目的:利用生动形象的演示实验及实物展图,提高学生的学习兴趣、激活思维,使他们的注意力、记忆力、思维凝聚在一起,加强学生对椭圆形象的认识,通过介绍“圆锥曲线”名称的由来,让学生对圆及椭圆之间的形变关系有一点点的体会.(二)新课教学1、椭圆的定义【问题一】将一根绳子的两端固定在同一个图钉处,再将铅笔套在绳子的折点处绷紧,然后旋转一周,便可在一块硬纸板上绘制出一个圆.如果将绳子的两端分别固定在距离小于绳长的两个图钉上,将铅笔卡在绳子内侧的任意位置绷紧,同样旋转一周,可以在硬纸板上绘制出什么样的图形呢?事实上,是可以做到的.将绳子的一端固定在硬纸板上的图钉处,将铅笔套在绳子的另一端,旋转一周,便得到一个圆.结合将装有咖啡的圆柱形杯子适度倾斜,得到的咖啡上底面是椭圆形,可知圆形和椭圆形存在着形变的关系.圆柱形杯子倾斜时,圆形水面的圆心便会向两侧均匀移动,圆心这个定点就拆分成为两个定点,到定点的距离也就变成了到两个定点之间的距离关系,再进行探索便可发现,当绳子的长度大于两个定点间的距离时,将铅笔卡在绳子上拉直,再旋转一周,所得到的图形便是椭圆形了.得出结果后,教师可就圆的绘制及椭圆的绘制过程及结果进行实践展示,加深学生的印象,也为后续问题做铺垫.设计目的:让学生对所掌握的知识重新进行归纳及整理,能大胆猜想,敢于实践,培养他们的探究精神.焦点及焦距的定义:椭圆的两个定点通常称为椭圆的两个焦点,两个焦点间的距离称之为焦距.【问题二】设椭圆的两个焦点分别为,椭圆上任一点,能否从以上绘制出的椭圆图形中,抽象出一个等量关系,并由此归纳椭圆的定义?由椭圆的绘制过程,容易观察出,绳子的长度始终是保持不变的,不妨设绳子的长度为,焦距为,则可得到等式:(),定义:平面上到两个定点的距离之和恒等于常数()的点的轨迹.设计目的:锻炼学生的观察能力,培养学生抽象概括的能力.【问题三】椭圆的定义中,去掉这个条件,所得到的轨迹还是椭圆吗?事实上,当绳子的长度恰好等于两定点间的距离时,是无法绘制出椭圆的,即满足()的点的轨迹是线段,当绳子的长度小于两定点间的距离时,是无法绘制出图像的,即满足()的点是不存在的.设计目的:培养学生严密的逻辑思维能力,让他们懂得分析问题时,应注意全面性.在归纳定义时,再次强调定义要满足三个条件:平面内(这是大前提);任意一点到两个定点的距离的和等于常数;常数大于.2、椭圆标准方程的推导播放课件:哈雷慧星1986年2月9日是上世纪第二次也是最后一次回归地球,天文学家推算出哈雷慧星每隔76年到达离地球最近点一次.【问题四】天文学家推算出76年以后它还将光临地球上空的依据是什么? 原来,哈雷彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行的周期及轨道的周期,预测它接近地球的时间.由此可说明轨迹方程有很大作用,怎样才能算出彗星运行轨道的方程呢?设计目的:利用课件生动形象的演示提高学生学习兴趣、激活学生思维,使学生的注意、记忆、思维凝聚在一起,加强学生对椭圆形象的认识,提高参与程度,让学生认识到学习椭圆的必要性.复习回顾:求曲线轨迹方程的步骤:建系设点列式化简(坐标法)验证启发学生类比求圆的方程的建系方法,建立适当的直角坐标系.学生可能会有如下几种建系方案:方案1:以定点为原点,两定点的连线为X轴;方案2:以定点为原点,两定点的连线为X轴;方案3:以两定点的连线为X轴,其垂直平分线为Y轴;方案4:以两定点的连线为Y轴,其垂直平分线为X轴. 方案 方案 方案 方案4【问题五】类比圆的方程的推导,四种建系方案中,哪些方案得出的椭圆的方程较为简便?事实上,圆心在原点,半径为的圆的方程为;圆心为(),半径为的圆的方程为;圆心为(),半径为的圆的方程为,可观察得出,圆心在原点的圆的方程最为简便,抓住图形的对称性来建立直角坐标系是这种建系方案最大的特点.从而,可猜想,方案3及方案4的建系方法得出的椭圆的方程应该比较简便.以方案三为例,推导椭圆的标准方程:建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系.设点:设是椭圆上任意一点,为了使的坐标简单及化简过程不那么繁杂,设,则设与两定点的距离的和等于列式: 化简:(这里是本节的一个难点.为突破难点,教师进行设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?还有没有其他方法,集思广议,进行筛选后,选择方案如下)两边平方,得:即两边平方,得:整理,得:令,则方程可简化为:整理成:指出:方程叫做椭圆的标准方程,焦点在轴上,焦点是【难点突破】1、学生对含有两个根式之和的等式进行化简有一定困难,可采用以下方法突破难点:首先让学生明确,含根号的等式化简的目的就是要去掉根号,变无理式为有理式;其次复习含有一个根式的等式的化简方法将根式放在等式的一边,其它项移到等式另一边,两边平方可去掉根号;有了这一基础,可启发学生,化简含两个根式之和的等式,只要将两个根式分别放在等号两边,其中一边只含一个根式,平方一次后即可转化为只含一个根式的化简问题.2、化简的方法还有很多,如等差中项法等,可布置为课后的思考题,发散学生的思维,进一步锻炼学生的计算能力.【问题六】如果以所在直线为轴,线段的垂直平分线为轴,建立直角坐标系,焦点是,椭圆的方程又如何呢?教师可结合多媒体进行辅助,翻转方案3的图形,引导学生得出焦点在轴上的椭圆的标准方程为:【问题七】已知椭圆标准方程,如何判断焦点位置?引导学生思考:看,的分母大小,哪个分母大就在哪一条轴上.设计目的:通过对比总结,强化不同类型的方程的异同,从而深化学生对椭圆标准方程的理解;通过讨论,学生自主学习,构建新的知识体系,不但能学习到真正属于自己的、可灵活运用的知识,而且在此过程中掌握求知的方法,深化学生对椭圆标准方程的理解.(三)典型例题研究:例1、下列方程是否表示椭圆,为什么?(1);(2) ;(3) ;(4) .方程中,A、B、C满足什么条件,方程可以表示椭圆?设计目的:使学生进一步熟悉椭圆的标准方程,在辨别中加深印象,加强对知识的理解.例2、已知,,求焦点分别在x、y轴上的椭圆的标准方程.分析:(略) 根据已知条件,求焦点分别在x、y轴上的椭圆的标准方程 (1); (2); (3) ; (4)设计目的:检测学生的掌握情况,及时反馈,强化知识点的学习,为下节课内容的学习打好基础;加深对所学知识的理解和运用,使学生掌握基础知识,利于学生思维能力的培养.例3、已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程.解:因为椭圆的焦点在轴上,所以设它的标准方程为 由椭圆的定义知, 所以,又因为,所以. 因此,所求的椭圆的标准方程为.【想一想】你还能用其他求它的方法吗?哪种方法更简单?你有什么体会?设计目的:教师板书示范,强调解题的规范并让学生熟练椭圆标准方程的运用.让学生知道用待定系数法也可以解决这道题.1.已知椭圆的焦点在轴上,且椭圆经过点和,求此椭圆的标准方程. 2.已知椭圆经过两个点和,求此椭圆的标准方程. 通过引导分析:焦点分别在x轴和y轴时对应有不同的方程,需要分两类来说明.变式1与例3类似,可以让学生自主练习,巩固方程的求法和待定系数法.变式2:引导学生观察,两道题条件有什么不同?当椭圆的焦点不确定时,应该如何选择方程?是否两类方程都适合呢?设计目的:这道题在设计上难度逐步加深,目的是要巩固知识,学习分类讨论的思想.四 课堂小结1.椭圆的定义(注意定义中的三个条件)2.椭圆的标准方程(注意焦点的位置与方程形式的关系)3.解析几何的基本思想设置目的:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养概括能力.(五)作业布置 (1)必做题:教材P42 1,2,3(2)选做题:求与圆(x-2)2+y2=1外切,且与圆(x+2)2+y2=49内切的动圆圆心的轨迹方程.设计目的:作业由易到难,分必做题和选做题,体现分层教学的思想,提高学生的学习积极性,使各层次的学生都找到各自的学习区,进一步促进教学目标的实现.(6) 板书设计2.2.1椭圆及其标准方程1椭圆的定义的符号语言2标准方程(1)焦点在轴上(2)焦点在轴上椭圆标准方程的推导过程例1、(略)(略)例2、(略)例3、(略)板书设计目的:条理清晰,把本节课的重点、难点写在黑板最突出的地方,便于不断强化学生对本节课知识的掌握.二、教学实践心得创设良好的教学情境,提高高中数学教学的实效性任何一个学生与生俱来都具有探究问题的心理需求、被人认可或欣赏的精神满足、获得成功或失败的情感体验,而这一些的获取,必须在一定的教育教学情境中才能实现.因此教师在教学中必须把学生要学习的内容巧妙地转化为教学情境,让学生带着强烈的好奇心和探究欲望,愉快地参与教学活动.创设教学情境经常采用的方法有:1、利用信息技术创设教学情境现代的多媒体技术,能把生动的动画图象、清晰的文字、注解和优美的声音有机地合成,并显示在大屏幕上,具有很强的真实感和表现力,可以调动学生学习积极性.对一些抽象的概念、难以观察的现象、跨越时空的事物和不需实现的愿望,利用信息技术和多媒体创设教学情境,可以吸引学生注意力,激发学生的探究兴趣.教学实录1:(多媒体辅助教学)请欣赏下面几幅图片,行星运行的轨道,生活中的盘子,水果的切面,椭圆形的镜子,这些都给我们以椭圆的形象.教学实录2:播放课件:哈雷慧星1986年2月9日是上世纪第二次也是最后一次回归地球,天文学家推算出哈雷慧星每隔76年到达离地球最近点一次.天文学家推算出76年以后它还将光临地球上空的依据是什么?实践表明,采用多媒体辅助教学,不仅使抽象的内容形象化,使便于学生认识,而且能增加学生的探究兴趣.提高分析问题和解决问题的能力.2、联系生活实际创设教学情境数学来源于生活,又为生活服务.我们可以利用学生所熟悉的生产、生活情境,创设情境,让学生体会到生活中的数学美,这样容易激发学生的愉悦心情,触发学生的情感和求知欲,更能提升学生探究学习的兴趣.课堂实录:师:今天早晨老师冲了杯咖啡带来,请观察,此时水的横截面边缘是什么图形?(圆柱形杯子竖直放置)生:圆师:我们如果将杯子倾斜一定的角度,此时水的横截面边缘又是什么图形呢?生:椭圆师:今天我们一起来探讨“椭圆及其标准方程”(点明主题)3、创设让学生动手操作的情境苏霍姆林斯基曾指出:“在人的灵魂深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者.”心理学研究也认为:“智慧出于手指尖” . 国际学习科学研究领域也有句名言:“听来的忘得快,看到的记得住,动手做更能学得好.”因此,在教学当中,我们就应尽可能地创设各种动手操作的情境,在教学中尽可能让学生的手、眼、脑、口等多种感官共同参与知识的内化过程,既有助于知识的掌握,又培养了学生的动手能力和探索精神,满足学生作为个体的需要,集中学生的注意力,调动学生学习兴趣,激励学生去努力成为一个发现者,研究者、探索者.课堂实录1:利用一根绳子及一枚图钉,可以在一块硬纸板上绘制出一个圆,类比这圆的绘制方法,利用绳子及图钉在硬纸板上绘制出椭圆.4、创设问题情境通过情境,提出问题,使教学信息具有新奇性,从而使学生产生浓厚的好奇心及求知欲,极大地激发了学生探究动机和兴趣,是创设问题情境来实施教学的主要功能表现.在探索创新过程中渗透和运用一些创造性的方法提出假设,建立新理论、给出新方法,有利于培养学生在创新过程中所需要的思维素质和探究能力.教学实录:【问题情境一】利用一根绳子及一枚图钉,可以在一块硬纸板上绘制出一个圆,类比这圆的绘制方法,你能否利用绳子及图钉在硬纸板上绘制出椭圆呢?【问题情境二】设椭圆的两个焦点分别为,椭圆上任一点,能否从以上绘制出的椭圆图形中,抽象出一个等量关系,并由此归纳椭圆的定义?【问题情境三】椭圆的定义中,去掉这个条件,所得到的轨迹还是椭圆吗?5、创设竞争情境美国心理学家、教育学家杰罗姆布鲁纳强调,学习的最好动机是对所学材料的兴趣,是奖励、竞争之类的外在刺激.因此,教学中,教师可适当创设竞争情境,引入竞争教学模式,为学生创造展示自我、表现自我的机会,促进所有学生比、学、赶、超,以激发学习兴趣.教学实录:方程中,A、B、C满足什么条件,方程可以表示椭圆?在该思考题的教学中,可将班级分成8个小组进行讨论,然后将各小组的讨论结果用投影仪进行展示,教师再对各小组的收获进行评价与补充.总之,经过教师精心创设教学情境,可以激发学生的学习动机,让他们在思想上产生浓厚的兴趣,使他们自觉主动的去深思、探究、发现和解决问题,从而享受学习的乐趣,收获成功的喜悦,真正成为学习的主人.作为新课程改革进程下的教育教学工作者,我们背负着神圣的使命,要真正调动学生学习数学的积极性,培养他们自主创新的意识及能力,我们还需要做得更多.参考文献:1、章建跃关于课堂教学中设置问题情境的几个问题【J】数学通报,1994,6:3-42、钟启泉课程与教学论【M】广州:广东高等教育出版社,1999 3、张新华关于在课堂多媒体网络环境下的情境创设【J】电化教育研究,2001,5,48-524、王文静情境认知与学习理论述评【J】全球教育展望,2002,(1):5155

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论