2005---2010年北京高考数学难题汇编.doc_第1页
2005---2010年北京高考数学难题汇编.doc_第2页
2005---2010年北京高考数学难题汇编.doc_第3页
2005---2010年北京高考数学难题汇编.doc_第4页
2005---2010年北京高考数学难题汇编.doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010年8. (8)如图,正方体ABCD-的棱长为2,动点E、F在棱上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,D(,大于零),则四面体PE的体积()与,都有关()与有关,与,无关()与有关,与,无关()与有关,与,无关14 (14)(14)如图放置的边长为1的正方形PABC沿x轴滚动。设顶点p(x,y)的轨迹方程是,则的最小正周期为 ;在其两个相邻零点间的图像与x轴所围区域的面积为 。 说明:“正方形PABC沿轴滚动”包括沿轴正方向和沿轴负方向滚动。沿轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在轴上时,再以顶点B为中心顺时针旋转,如此继续。类似地,正方形PABC可以沿轴负方向滚动。(19)(本小题共14分)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。(20)(本小题共13分)已知集合对于,定义A与B的差为A与B之间的距离为()证明:,且;()证明:三个数中至少有一个是偶数() 设P,P中有m(m2)个元素,记P中所有两元素间距离的平均值为(P). 证明:(P).(8)D (14)4 (19)(共14分)(I)解:因为点B与A关于原点对称,所以点得坐标为. 设点的坐标为 由题意得 化简得 . 故动点的轨迹方程为(II)解法一:设点的坐标为,点,得坐标分别为,. 则直线的方程为,直线的方程为令得,.于是得面积 又直线的方程为,点到直线的距离.于是的面积 当时,得又,所以=,解得。因为,所以故存在点使得与的面积相等,此时点的坐标为.解法二:若存在点使得与的面积相等,设点的坐标为 则. 因为, 所以 所以 即 ,解得 因为,所以 故存在点S使得与的面积相等,此时点的坐标为.(20)(共13分)证明:(I)设, 因为,所以, 从而 又由题意知,.当时,; 当时,所以(II)设, ,. 记,由(I)可知 所以中1的个数为,的1的个数为。 设是使成立的的个数,则 由此可知,三个数不可能都是奇数, 即,三个数中至少有一个是偶数。(III),其中表示中所有两个元素间距离的总和,设种所有元素的第个位置的数字中共有个1,个0则=由于所以从而2009年8 点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是 ( ) A直线上的所有点都是“点” B直线上仅有有限个点是“点” C直线上的所有点都不是“点” D直线上有无穷多个点(点不是所有的点)是“点”14. 14已知数列满足:则_;=_.综上可知,函数内单调递增时,的取值范围是.19(本小题共14分)已知双曲线的离心率为,右准线方程为()求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.w.k.s.5.u、.c.o.m 20(本小题共13分) 已知数集具有性质;对任意的,与两数中至少有一个属于. w.w.w.k.s.5.u.c.o.m ()分别判断数集与是否具有性质,并说明理由;()证明:,且;()证明:当时,成等比数列.8 【答案】A【解析】本题主要考查阅读与理解、信息迁移以及学生的学习潜力,考查学生分析问题和解决问题的能力. 属于创新题型. 本题采作数形结合法易于求解,如图,设,则,消去n,整理得关于x的方程 (1)恒成立,方程(1)恒有实数解,应选A. 14.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得,. 应填1,0.19【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力()由题意,得,解得,w.w.w.k.s.5.u.c.o.m ,所求双曲线的方程为.()点在圆上,w.w.w.k.s.5.u.c.o.m 圆在点处的切线方程为,化简得. w.w.w.k.s.5.u.c.o.m 由及得,切线与双曲线C交于不同的两点A、B,且,且,w.w.w.k.s.5.u.c.o.m 设A、B两点的坐标分别为,则,w.w.w.k.s.5.u.c.o.m ,且, w.w.w.k.s.5.u.c.o.m . 的大小为.w.k.s.5.u.c.o.m 【解法2】()同解法1.()点在圆上,w.w.w.k.s.5.u.c.o.m 圆在点处的切线方程为,化简得.由及得w.w.w.k.s.5.u.c.o.m 切线与双曲线C交于不同的两点A、B,且,设A、B两点的坐标分别为,则,w.w.w.k.s.5.u.c.o.m , 的大小为.w.k.s.5.u.c.o.m (且,从而当时,方程和方程的判别式均大于零).20. 【解析】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法本题是数列与不等式的综合题,属于较难层次题.()由于与均不属于数集,该数集不具有性质P. 由于都属于数集, 该数集具有性质P. ()具有性质P,与中至少有一个属于A,由于,故. w.w.w.k.s.5.u.c.o.m 从而,. w.w.w.k.s.5.u.c.o.m , ,故. 由A具有性质P可知.又,w.w.w.k.s.5.u.c.o.m 从而,. w.w.w.k.s.5.u.c.o.m ()由()知,当时,有,即, ,由A具有性质P可知. w.w.w.k.s.5.u.c.o.m 由,得,且,即是首项为1,公比为成等比数列.k.s.5.2008年 8如图,动点在正方体的对角线上过点作垂直于平面的直线,与正方体表面相交于设,则函数的图象大致是( )ABCDMNPA1B1C1D1yxAOyxBOyxCOyxDO14. 14某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,当时,表示非负实数的整数部分,例如,按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 19(本小题共14分)已知菱形的顶点在椭圆上,对角线所在直线的斜率为1()当直线过点时,求直线的方程;()当时,求菱形面积的最大值20(本小题共13分)对于每项均是正整数的数列,定义变换,将数列变换成数列对于每项均是非负整数的数列,定义变换,将数列各项从大到小排列,然后去掉所有为零的项,得到数列;又定义设是每项均为正整数的有穷数列,令()如果数列为5,3,2,写出数列;()对于每项均是正整数的有穷数列,证明;()证明:对于任意给定的每项均为正整数的有穷数列,存在正整数,当时,8B14 19(共14分)解:()由题意得直线的方程为因为四边形为菱形,所以于是可设直线的方程为由得因为在椭圆上,所以,解得设两点坐标分别为,则,所以所以的中点坐标为由四边形为菱形可知,点在直线上, 所以,解得所以直线的方程为,即()因为四边形为菱形,且,所以所以菱形的面积由()可得,所以所以当时,菱形的面积取得最大值20(共13分)()解:,;,()证明:设每项均是正整数的有穷数列为,则为,从而又,所以,故()证明:设是每项均为非负整数的数列当存在,使得时,交换数列的第项与第项得到数列,则当存在,使得时,若记数列为,则所以从而对于任意给定的数列,由可知又由()可知,所以即对于,要么有,要么有因为是大于2的整数,所以经过有限步后,必有即存在正整数,当时,2007年8对于函数,判断如下三个命题的真假:命题甲:是偶函数;命题乙:在上是减函数,在上是增函数;命题丙:在上是增函数能使命题甲、乙、丙均为真的所有函数的序号是()14已知函数,分别由下表给出123131123321则的值为;满足的的值是19(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为(I)求面积以为自变量的函数式,并写出其定义域;(II)求面积的最大值20已知集合,其中,由中的元素构成两个相应的集合:,其中是有序数对,集合和中的元素个数分别为和若对于任意的,总有,则称集合具有性质(I)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和;(II)对任何具有性质的集合,证明:;(III)判断和的大小关系,并证明你的结论88函数,函数=是偶函数;且在上是减函数,在上是增函数;但对命题丙:=在x(,0)时,为减函数,排除函数,对于函数,函数不是偶函数,排除函数只有函数符合要求,选D。14=;当x=1时,不满足条件,当x=2时,满足条件,当x=3时,不满足条件, 只有x=2时,符合条件。19(共13分)解:(I)依题意,以的中点为原点建立直角坐标系(如图),则点的横坐标为点的纵坐标满足方程,解得,其定义域为(II)记,则令,得因为当时,;当时,所以是的最大值因此,当时,也取得最大值,最大值为即梯形面积的最大值为20(共13分)(I)解:集合不具有性质集合具有性质,其相应的集合和是,(II)证明:首先,由中元素构成的有序数对共有个因为,所以;又因为当时,时,所以当时,从而,集合中元素的个数最多为,即(III)解:,证明如下:(1)对于,根据定义,且,从而如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立故与也是的不同元素可见,中元素的个数不多于中元素的个数,即,(2)对于,根据定义,且,从而如果与是的不同元素,那么与中至少有一个不成立,从而与中也不至少有一个不成立,故与也是的不同元素可见,中元素的个数不多于中元素的个数,即,由(1)(2)可知,2006年(8)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口A、B、(C的机动车辆数如图所示,图中、分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则(A)(B)(C)(D)(14)已知A、B、C三点在球心为O,半径为R的球面上,ACBC,且AB=R,那么A、B两点间的球面距离为 球心到平面ABC的距离为 .19. 已知点M(2,0),N(2,0),动点P满足条件| PM | PN |=2,记动点P的轨迹为W.()求W的方程;()若A,B是W上的不同两点,O是坐标原点,求、的最小值.20. 在数列中,若a1,a2是正整数,且3,4,5,则称为“绝对差数列”.()举出一个前五项不为零的“绝对差数列”(只要求写出前十项);()若“绝对差数列” 中,数列满足 n=1,2,3,分析判断当时,的极限是否存在,如果存在,求出其极限值;()证明:任何“绝对差数列”中总含有无穷多个为零的项.(8)C(14)(19)(共14分) 解法一:()由|PM|PN|=知动点P的轨迹是以M,N为焦点的双曲线的右支,实 半轴长 又半焦距c=2,故虚半轴长. 所以W的方程为. ()设A,B的坐标分别为( 当AB轴时,从而 当AB与轴不垂直时,设直线AB的方程为,与W的方程联立,消 去y得 故, 所以 =. 又因为,所以,从而 综上,当AB轴时,取得最小值2.解法二: ()同解法一. ()设A,B的坐标分别为(,则 令, 则且1,2)所以 = , 当且仅当,即时“=”成立. 所以的最小值是2.(20)(共14分)()解: (答案不惟一)()解:因为在绝对差数列所以自第20项开始,该数列是即自第20项开始。每三个相邻的项周期地取值3,0,3. 所以当时,的极限不存在. 当()证明:根据定义,数列必在有限项后出现零项.证明如下: 假设中没有零项,由于,所以对于任意的n,都有,从而当时,;当时,;即的值要么比至少小1,要么比至少小1.令n=1,2,3,则2,3,4,).由于是确定的正整数,这样减少下去,必然存在某项,这与(n=1,2,3,)矛盾. 从而必有零项.若第一次出现的零项为第n项,记),则自第n项开始,每三个相邻的项周期地取值0,即所以绝对差数列中有无穷多个为零的项.2005年8函数( )A在上递减B在上递减C在上递减D在上递减14. 已知n次多项式, 如果在一种算法中,计算(k2,3,4,n)的值需要k1次乘法,计算的值共需要9次运算(6次乘法,3次加法),那么计算的值共需要 次运算 下面给出一种减少运算次数的算法:(k0, 1,2,n1)利用该算法,计算的值共需要6次运算,计算的值共需要 次运算19.(本小题共12分)设数列an的首项a1=a,且, 记,nl,2,3,(I)求a2,a3;(II)判断数列bn是否为等比数列,并证明你的结论;(III)求20.5(本小题共14分) 设f(x)是定义在0, 1上的函数,若存在x*(0,1),使得f(x)在0, x*上单调递增,在x*,1上单调递减,则称f(x)为0, 1上的单峰函数,x*为峰点,包含峰点的区间为含峰区间 对任意的0,l上的单峰函数f(x),下面研究缩短其含峰区间长度的方法(I)证明:对任意的x1,x2(0,1),x1x2,若f(x1)f(x2),则(0,x2)为含峰区间;若f(x1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论