测量平差基础参考资料.doc_第1页
测量平差基础参考资料.doc_第2页
测量平差基础参考资料.doc_第3页
测量平差基础参考资料.doc_第4页
测量平差基础参考资料.doc_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 绪论第二、三章 全书的基础知识第四章 介绍测量平差理论第五、六、七、八章 4种平差方法第九章 各种平差方法的总结第十章 讨论点位精度第十一章 统计假设检验的知识第十二章 近代平差概论根据本科教学大纲的要求,重点讲解第二章第八章以及第十章的内容。二、怎样学好测量平差1. 要有扎实的数学基础。只有牢固地掌握了高等数学,线性代数和概率与数理统计等课程的知识才能学好测量平差,因此课前要做到预习,对与以上三门课程有关内容进行复习,只有这样才能听懂这一节课。2. 听课时弄清解决问题的思路,掌握公式推导的方法以及得到的结论,培养独立思考问题和解决问题的能力。3. 课后及时复习并完成一定数量的习题(准备A、B两个练习本),从而巩固课堂所学的理论知识。第一章 绪论本章主要说明观测误差的产生和分类,测量平差法研究的内容以及本课程的任务。第二章 误差分布与精度指标全章共分5节,是本课程的重点内容之一。重点:偶然误差的规律性,精度的含义以及衡量精度的指标。难点:精度、准确度、精确度和不确定度等概念。要求:弄懂精度等概念;深刻理解偶然误差的统计规律;牢固掌握衡量精度的几个指标。第三章 协方差传播律及权全章共分7节,是本课程的重点内容之一。重点:协方差传播律,权与定权的常用方法,以及协因数传播律。难点:权,权阵,协因数和协因数阵等重要概念的定义,定权的常用方法公式应用的条件,以及广义传播律(协方差传播律和协因数传播律)应用于观测值的非线性函数情况下的精度评定问题。要求:通过本章的学习,弄清协因数阵,权阵中的对角元素与观测值的权之间的关系;能牢固地掌握广义传播律和定权的常用方法的全部公式,并能熟练地应用到测量实践中去,解决各类精度评定问题。第四章 平差数学模型与最小二乘原理全章共分5节。重点:测量平差的基本概念,四种基本平差方法的数学模型和最小二乘原理。难点:函数模型的线性化,随机模型。要求:牢固掌握本章的重点内容;深刻理解最小二乘原理中“最小”的含义;对于较简单的平差问题,能熟练地写出其数学模型。第五章 条件平差全章共分4节,是基本测量平差方法之一。重点:条件平差的数学模型,平差原理,基础方程及其解以及精度评定问题。难点:各种不同类型的控制网(水准网,测角网和测边网)中,必要观测数t 的确定,非线性条件方程线性化,以及求平差值非线性函数的中误差。要求:通过本章的学习,能牢固掌握并能推导条件平差全部的公式;能熟练地列出各种控制网中的条件方程并化为线性形式;并求出平差值、单位权中误差和平差值函数的中误差。第六章 附有参数的条件平差全章共分3节,是基本测量平差方法之一。重点:附有参数的条件平差数学模型,平差原理,基础方程及其解。难点:各种不同类型的控制网中,条件方程个数c 的确定,函数模型的建立。要求:了解附有参数的条件平差法的平差原理;在对各种类型的控制网平差时,能准确地确定条件方程的个数;并熟练地列出条件方程以及组成法方程。第七章 间接平差全章共分9节,是基本平差方法之一。重点:间接平差原理、数学模型、基础方程及其解,以及精度评定等内容。难点:测角网、测边网坐标平差和导线网、GPS网间接平差时误差方程的列立及线性化,求参数的非线性函数的中误差。要求:通过本章的学习,牢固掌握间接平差的平差原理并能推导全部的公式;能熟练地列出测角网、测边网坐标平差的线性化误差方程,以及参数的非线性函数的权函数式;并求出参数平差值、单位权中误差和参数函数中误差。第八章 附有限制条件的间接平差全章共分3节,是基本平差方法之一。重点:附有限制条件的间接平差原理,函数模型的建立和法方程的组成,以及求参数函数的中误差。难点:误差方程的列立,限制条件个数s 的确定及方程的列立,求参数函数的协因数。要求:了解附有限制条件的间接平差原理,能熟练地列出对各种控制网平差时的误差方程和限制条件方程,并组成法方程。第九章 概括平差函数模型全章共分5节,是对4种基本平差方法的综合和总结。重点:附有限制条件的条件平差(概括平差函数模型)函数模型的建立,概括平差函数模型与4种基本平差方法函数模型之间的关系。难点:最小二乘估计量最优统计性质的证明和单位权方差估值公式的推导。要求:弄清各种平差方法的共性和特性,以及4种基本平差方法函数模型与概括平差函数模型之间的关系。第十章 误差椭圆全章共分6节。重点:误差椭圆、相对误差椭圆三个参数的计算、作法和用途,任意方向(或)的位差的计算公式。难点:极值方向的确定和误差椭圆的作用。要求:通过本章的学习,能熟练地求出任意方向(或)上的位差;根据已知待定点坐标平差值协因数阵,准确地计算误差椭圆、相对误差椭圆的三个参数并画出略图,误差椭圆在平面控制网优化设计中的作用。第一章绪论 1-1观测误差 测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。 一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。3. 粗差定义,例如观测时大数读错。1-4 本课程的任务和内容一、测量平差的任务处理带有观测误差的观测值,估计待求量的最佳估值并评定测量成果的精度。二、测量平差的内容1. 建立观测误差的统计理论,简称误差理论。研究误差的统计分布,误差的估计与传播;2. 研究衡量观测成果质量的精度指标;3. 建立观测值与待求量之间的函数模型,以及描述观测精度及其相关性的随机模型;4. 研究估计待求量的最优化准则;5. 结合测量实践研究测量平差的各种方法;6. 研究预报和质量控制问题。 第二章误差分布与精度指标2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。一、一维正态分布2-2偶然误差的规律性 2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。当观测值个数 的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。4. 偶然误差的特性第三章 协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别 又如图31中用侧方交会求交会点的坐标等。现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。 31 数学期望的传播数学期望是描述随机变量的数字特征之一,在以后的公式推导中经常要用到它,因此,首先介绍数学期望的定义和运算公式。其定义是: 32 协方差传播律从测量工作的现状可以看出:观测值函数与观测值之间的关系可分为以下3种情况,下面就按这3种情况来讨论两者之间中误差的关系。第四章 平差数学模型与最小二乘原理第五章条件平差5-1条件平差原理以条件方程为函数模型的方法称之条件平差。二、按条件平差求平差值的计算步骤及示例计算步骤:1. 列出r=n-t个条件方程;2. 组成并解算法方程;3. 计算V和 的值;4. 检核。例5-2课外作业:1. 在图1中,已知角度独立观测值及其中误差为: (1)试列出改正数条件方程;(2)试按条件平差法求 的平差值。2. 在图2中,A,B,C三点在一直线上,测出了AB,BC及AC的距离,得4个独立观测值:若令100m量距的权为单位权,试按条件平差法确定A,C之间各段距离的平差值 。第六章附有参数的条件平差一、 问题的提出由条件平差知,对于n个观测值,t个必要观测(nt)的条件平差问题,可以列出r=n-t个独立的条件方程,且列出r个独立的条件方程后就可以进行后继的条件平差计算。然而,在实际工作中,有些平差问题的r个独立的条件方程很难列出。例如,在图1所示的测角网中,A、B为已知点,AC为已知边。观测了网中的9个角度,即n=9。要确定C、D、E三点的坐标,其必要观测数为t=5,故条件方程的个数为r=n-t=9-5=4,即必须列出4个独立的条件方程。由图1知,三个图形条件很容易列出,但第四个条件却不容易列出。第七章间接平差7-1 间接平差原理7-2 精度评定 复习思考题:1、 间接平差的函数模型和随机模型是什么? 2、 间接平差法与条件平差法的结果上否一样?为什么?3、 证明间接平差法中改正数向量 和平差值向量 不相关。第八章附有限制条件的间接平差原理本章重点:1、 附有限制条件的间接平差原理2、 精度评定3、误差方程、限制条件方程的列立在一个平差问题中,多余观测数 ,如果在平差中选择的参数 个,其中包含了 个独立参数,则参数间存在 个限制条件。平差时列出 个观测方程和 个限制参数间关系的条件方程,以此为函数模型的平差方法,称为附有限制条件的间接平差。第九章概括平差函数模型第九章 概括平差函数模型第十章误差椭圆本章重点:1、误差椭圆的定义2、确定误差椭圆的三个要素3、确定任意方向上的位差4、相对误差椭圆的应用10-1概述第一章思考题1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。1.3 用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1) 尺长不准确;(2) 尺不水平;(3) 估读小数不准确;(4) 尺垂曲;(5) 尺端偏离直线方向。1.4在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号:(1) 视准轴与水准轴不平行;(2) 仪器下沉;(3) 读数不准确;(4) 水准尺下沉。1.5何谓多余观测?测量中为什么要进行多余观测?答案:1.3 (1)系统误差。当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4(1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”第二章思考题2.1为了鉴定经纬仪的精度,对已知精确测定的水平角作12次同精度观测,结果为:设a没有误差,试求观测值的中误差。2.2已知两段距离的长度及中误差分别为300.465m4.5cm及660.894m4.5cm,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差、和中误差、,并比较两组观测值的精度。2.4设有观测向量,已知=2秒,=3秒,试写出其协方差阵。2.5设有观测向量的协方差阵,试写出观测值L1,L2,L3的中误差及其协方差、和。答案:2.12.2它们的真误差不一定相等,相对精度不相等,后者高于前者2.3=2.4=2.4=2.7=3.6两组观测值的平均误差相同,而中误差不同,由于中误差对大的误差反应灵敏,故通常采用中误差做为衡量精度的的指标,本题中,故第一组观测值精度高2.42.5=2, =3, ,第三章思考题3.1下列各式中的均为等精度独立观测值,其中误差为,试求X的中误差:(1);(2)3.2已知观测值,的中误差,设,试求X,Y,Z和t的中误差。3.3设有观测向量,其协方差阵为分别求下列函数的的方差:(1);(2)3.4设有同精度独立观测值向量的函数为,式中和为无误差的已知值,测角误差,试求函数的方差、及其协方差3.5在图中ABC中测得,边长,试求三角形面积的中误差。3.6在水准测量中,设每站观测高差的中误差均为1mm,今要求从已知点推算待定点的高程中误差不大于5cm,问可以设多少站?3.7有一角度测4个测回,得中误差为0.42,问再增加多少个测回其中误差为0.28?3.8在相同观测条件下,应用水准测量测定了三角点A,B,C之间的高差,设三角形的边长分别为S1=10km,S2=8km,S3=4km,令40km的高差观测值权威单位权观测,试求各段观测高差之权及单位权中误差。3.9以相同观测精度和,其权分别为,已知,试求单位权中误差的中误差。3.10已知观测值向量的权阵为,试求观测值的权和答案:3.1 (1), (2)3.2,3.3,3.43.53.6最多可设25站3.7再增加5个测回3.8,3.9,3.10,第四章思考题4.1几何模型的必要元素与什么有关?必要元素就是必要观测数吗?为什么?4.2必要观测值的特性是什么?在进行平差前,我们首先要确定哪些量?如何确定几何模型中的必要元素?试举例说明。4.3在平差的函数模型中,n,t,r,u,s,c等字母代表什么量?它们之间有什么关系?4.4测量平差的函数模型和随机模型分别表示那些量之间的什么关系?4.5最小二乘法与极大似然估计有什么关系?第五章条件平差习题第六章思考题6.1某平差问题有12个同精度观测值,必要观测数t = 6,现选取2个独立的参数参与平差,应列出多少个条件方程?6.2有水准网如图,A为已知点,高程为,同精度观测了5条水准路线,观测值为,若设AC间高差平差值,试按附有参数的条件平差法,(1)列出条件方程(2)列出法方程(3)求出待定点C的最或是高程6.3下图水准网中,A为已知点,P1,P2,P3为待定点,观测了高差,观测路线长度相等,现选择P3点的高程平差值为参数,求P3点平差后高程的权。6.4下图水准网中,A为已知点,高程为,P1P4为为待定点,观测高差及路线长度为:h1=1.270m,S1=2;h2=-3.380m,S2=2;h3=2.114m,S3=1;h4=1.613m,S4=2;h5=-3.721m,S5=1;h6=2.931m,S6=2;h7=0.782m,S7=2;若设P2点高程平差值为参数,求:(1)列出条件方程;(2)列出法方程;(3)求出观测值的改正数及平差值;(4)平差后单位权方差及P2点高程平差值中误差。6.5如图测角网中,A、B为已知点,C、D为待定点,观测了6个角度,观测值为:L1=40。2358”, L2=37。1136”,L3=53。4902”, L4=57。0005”L5=31。5900”, L4=36。2556”若按附有参数的条件平差,(1)需要设哪些量为参数;(2)列出条件方程;(3)求出观测值的改正数及平差值。思考题参考答案6.2n=5t=3r=2u=1c=36.3n=5t=3r=2u=1c=3v1+v4+v5+w1=0v2+v3-v5+w2=0v1+v2-+w3=06.4(1)v1+v2+v3+4=0v3+v4+v5+6=0v5+v6+v7+8=0v1+v7-=0(2)(3)(4),6.5(1)设(2)v1+v6=0v2+v3+v4+ v5-17”=0-0.955 v1+ 0.220 v2-0.731 v3+0.649 v4-0.396 v5+ 0.959 v6+2”=0(3)法方程:=0第七章思考题7.1 如图闭合水准网中,A为已知点,高程为,P1,P2为高程未知点,观测高差及路线长度为:h1=1.352m,S1=2 km;h2=-0.531m,S2=2 km;h3=-0.826m,S3=1 km;试用间接平差求各高差的平差值。7.2图中A、B、C为已知点,P为为待定点,网中观测了3条边长L1 L3,起算数据及观测数据均列于表中,现选待定点坐标平差值为参数,其坐标近似值为(57578.93m,70998.26m),试列出各观测边长的误差方程式。点号坐标X / mY / mA60509.59669902.525B58238.93574300.086C51946.28673416.515边号L1L2L3观测值 / m3128.863367.206129.887.3下图水准网中,A、B为已知点P1 P3为待定点,观测高差h1 h5,相应的路线长度为4 km,2 km,2 km,2 km,4 km,若已知平差后每千米观测高差中误差的估值为3 mm,试求P2点平差后高差的中误差。7.4在剪接平差中,与,与是否相关?试证明。7.5有水准网如图,A、B、C、D为已知点,P1 、 P2为待定点,观测高差h1 h5,路线长度为S1 = S2= S5=6 km,S3= 8 km,S4= 4 km,若要求平差后网中最若点高程中误差5 mm,试估计该网每千米观测高差中误差为多少?思考题参考答案7.1,7.27.3,7.5每千米观测高差中误差小于3.3 mm第八章思考题8.1附有限制条件的间接平差中的限制条件与条件平差中的条件方程有何异同?8.2附有限制条件的间接平差法适用于什么样的情况?解决什么样的平差问题?在水准测量平差中经常采用此平差方法吗?8.3在图中的大地四边形中,A、B为已知点,C 、D为为待定点,现选取L3,L4,L5,L6,L8的平差值为参数,记为,列出误差方程和条件方程。8.4 如图水准网中,A为已知点,高程为,观测高差及路线长度为:线路h / mS / km12.56312-1.32613-3.88524-3.8832若设参数,定权时C= 2 km,试列出:(1)误差方程和限制条件(2)法方程式8.5 试证明在附有限制条件的间接平差中:(1)改正数向量V与平差值向量互不相关;(2)联系数与未知数的函数互不相关。思考题参考答案8.3n=8t=4u=5s=1令L3,L4,L5,L6,L8的参数近似值为,且,误差方程为:其中常数项:限制条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论