奥特利夫精益生产之--6SigmaIntro.ppt_第1页
奥特利夫精益生产之--6SigmaIntro.ppt_第2页
奥特利夫精益生产之--6SigmaIntro.ppt_第3页
奥特利夫精益生产之--6SigmaIntro.ppt_第4页
奥特利夫精益生产之--6SigmaIntro.ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 APSTrainingModuleQF 6Sigma Autoliv14 April 2006QF TM 004 C2 0 2 3 Whythistraining Duringthistrainingyouwilllearn What6SigmaisAmeasurementofqualityAproblemsolvingmethodExamplesoftoolsin6Sigma 4 Whatis6Sigma SigmaistheGreekletterusedtorepresentvariation AsigmalevelisameasurementofqualityA6SigmalevelprocesscreatesclosetonofailuresAsigmalevelisameasurementofhowwelltheprocessmeetscustomerspecifications6SigmaisaproblemsolvingmethodCustomercenteredSystematicDatadriven 5 AMeasurementofQuality 6 2s308 5373s66 8074s6 2105s2336s3 4 AMeasurementofQuality A6Sigmaprocesshasonlyabout3 4ppm SigmaLevel PPM 7 AMeasurementofQuality Outof365RoundsperYear 2s 6missedputtsperround 3 1missedputtperround 4 1missedputtevery9rounds 5 1missedputtin1 5years 6 1missedputtin45years 8 AProblemSolvingMethod 9 APSToolbox TheAPSToolboxisexpandedwiththe6SigmaToolstosolvemorecomplexproblemswithincreasedefficiency 10 CustomerCentered Whoisthecustomer Whatiscriticaltothequality CTQ forthecustomer Howarethecustomer sexpectationsnotbeingmet ActionsbasedondataarethekeytoCustomerSatisfaction 11 Systematic 6SigmafollowsaroadmapTolinktoolsmorepowerfullytogetherToguidetheteamthroughtheproblem 12 TheDMAICMethod Defineprojectorproblem MeasurecurrentsituationProcessbehaviorchartsCapabilityanalysisParetocharts CreateCause EffectMatrix Selectcorrectiveactions DocumentResults DevelopProjectPlanSelectteamBusinesscaseSMARTobjectiveProjectscopeKeymetricOperationaldefinition ConductMeasurementSystemAnalysis MSA CreateVMEA ImplementCorrectiveactions ImplementcontrolmethodControlplanStandardsTrainingmatrixSWIAuditSPC CreateProcessMaporFishboneDiagram RootcauseanalysisprocessVMEAActionsTestingpotentialrootcausesOFATTestsDOETests VerifycorrectiveactionsCapabilityanalysisProcessbehaviorchartsOFATTestsDOEConfirmatory DocumentLessonsLearned Determinecustomer sCTQs OptimizeProcessDOETestsResponseOptimizerResponsesurfacemodels RSM ConfirmrootcauseReproducefailureOFATTestsDOETests 13 Systematic 6SigmaisaboutreducingvariationUnderstandthesystemY f x DeterminetodominatesourceofvariationControlthedominatesource 14 TheDMAICMethod ProcessMapCollectsallknowninputandoutputvariablesCauseandEffectMatrixPrioritizesthevariablesmostlikelytohaveamajorimpactVMEAStudieshowselectedvariablescancausetheprocesstofailStatisticaltoolsarethenusedtoquantifytherelationshipbetweentheseselectedinputandoutputvariables 15 DataDriven KeyConcepts Variablealwaystrumpscategorical Variabledataismorepowerfulthancategoricalbecauseitcontainsmoreinformation Dataisinnocentuntilprovenguilty Variationinaprocessisconsideredtoberandomuntilevidenceshowsotherwise Agraphisworthathousanddata Thecorrectgraphorstatisticaltoolcanobjectivelymakeconclusionsmuchbetterthanrawortabulateddata 16 DataDriven Attemptingtocontrolvariationwithoutunderstandingandquantifyingit simplyaddsonemoresourcetotheproblem 17 DataDriven Basedonthedata whatisthisprocessdoing GettingbetterGettingworseStayingthesameWhatwillthe scrapbeinthreemonths 18 DataDriven Basedonthechart whatisthisprocessdoing GettingbetterGettingworseStayingthesameWhatwillthe scrapbeinthreemonths 19 DataDriven Basedonthechart whatisthisprocessdoing GettingbetterGettingworseStayingthesameWhatwillthe scrapbeinthreemonths 20 MeasurementSystemAnalysisGageR R ObjectiveEvaluateswhetherameasuringsystemforvariabledataisadequateReportsRepeatabilityAmountofvariationduetogageandmethodReproducibilityAmountofvariationduetochangingoperators StudyVariationPercentofobservedvariationthatisduetothemeasurementsystem ToleranceComparesthemeasurementsystemtothetolerance StudyVar StudyVar ToleranceSourceStdDev SD 5 15 SD SV SV Toler TotalGageR R0 00892860 04598219 379 20Repeatability0 00828860 04268617 988 54Reproducibility0 00331970 0170967 203 42Appraiser0 00331970 0170967 203 42Part To Part0 04522580 23291398 1146 58TotalVariation0 04609870 237408100 0047 48NumberofDistinctCategories 7 21 MeasurementSystemAnalysisKappaTest ObjectiveEvaluateswhetherameasuringsystemforcategoricaldataisadequateReportsKappaScore 7and 9isexcellentPercentAgreementandConfidenceIntervals Fleiss KappaStatisticsResponseKappaSEKappaZP vs 0 Good0 7696560 063245612 16930 0000Short0 7696560 063245612 16930 0000 Fleiss KappaStatisticsResponseKappaSEKappaZP vs 0 Good0 2534720 06324564 007750 0000Short0 2534720 06324564 007750 0000 Before After 22 DataDrivenExample1 You retheplantmanagerYouarereviewinganarea sscraprateWhatshouldyoudo MonthScrapRate Giveareaaplaqueforanall timelowinscrap Wishedyouhadtheplaqueback That sbetter Fivemonthsofsteadilyincreasingscrap 23 DataDrivenExample1 ProcessbehaviorchartsIdentifyspecialcausevariationfromcommoncausevariationCommonCauseTheinherentrandomvariationcausedbymanyinputsSpecialCauseThenon randomchangesinaprocessusuallycausedbyoneinput Allchangesinscrapratewereduetocommoncausevariation 24 DataDrivenExample2 You retheproductionmanagerAmachinesupplieroffersyouanewmachinetoreducecycle timeThenewmachineis 50 000Areductionof2secondsincycle timecouldsave 100 000overayearThefollowingdataisgivenbythemachinesupplier MachineCycleTimesOldNew8 79 419 913 96 35 921 216 812 311 813 6811 56 Averages 25 DataDrivenExample2 TTestDistinguishesifdifferencesbetweensamplesaresignificantorsimplybyrandomchanceIntervalPlotDisplaystheconfidenceintervalsaroundeachsamplemeanandvisuallyrepresentsthettestevaluationOtherStatisticalTestsANOVARegressionChi SquaredProportionTestofEqualVariance TTestResults P Value 0 284Conclusion Thedifferencebetweenmachinesisbyrandomchance 26 DataDrivenExample3 Ateamhasimplementedimprovementsthattheybelievewillreducethevariabilitybyatleast20 Managementwantslessthan5 chanceofmissingthepotentialimprovementManagementalsowantslessthan5 chanceofimplementingthechangesiftheimprovementisnotreal 27 DataDrivenExample3 SamplesizeevaluationDeterminesthesamplesneededtoseechangesbasedon RiskTheprobabilityofmakingawrongdecisionDifferenceThemagnitudeofthechangetobetestedcomparetothenormalvariation Samplesfor20 reductionat95 confidence 220samplesbeforeandafterchanges 28 DataDrivenExample4 ThewebsensitivityforaseatbeltmodelhastoomuchvariationTheteamneedstoknowwheretosetandhowtocontrolthesecomponentdimensions InertialmassweightBearingheightSpringrateLeverlength 29 DataDrivenExample4 Whichfactorshaveanaffect Whatistheoptimalcondition RememberReducingcomponenttolerancescostsmoney Dataarefictionalvalues 30 DataDrivenExample4 DOE DesignofExperiments AsystematicsetofteststhatefficientlydeterminetheeffectofeachinputontheoutputsInteractionHowoneinputchangestheeffectofanotherinputontheoutput notseeninsinglefactortests ResultsTheseresultscanbeusedtodeterminethesettingsoftheinputstooptimizetheoutput Dataarefictionalvalues 31 Control Controlisthelast

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论