已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两直线的交点坐标与距离公式 返回目录 一 两直线的交点已知两条直线l1 A1x B1y C1 0与l2 A2x B2y C2 0的交点坐标对应的是方程组A1x B1y C1 0A2x B2y C2 0 的解 考点分析 其中 当A1B2 A2B1 0时 两条直线 当A1B2 A2B1 0且A1C2 A2C1 0 或B1C2 B2C1 0 时 两条直线无交点 即 当A1B2 A2B1 0且A1C2 A2C1 0 或B1C2 B2C1 0 时 两条直线有无数个公共点 即 二 距离公式1 两点间的距离平面上两点P1 x1 y1 P2 x2 y2 间的距离 P1P2 2 点到直线的距离平面上一点P x1 y1 到一条直线l Ax By C 0的距离d 返回目录 相交于一点 平行 重合 返回目录 3 两平行线的距离若l1 l2是平行线 求l1 l2距离的方法 1 求一条直线上一点到另一条直线的距离 2 设l1 Ax By C1 0 l2 Ax By C2 0 则d 返回目录 已知直线l1 m 3 x 4y 5 3m l2 2x m 5 y 8 问m为何值时 l1 l2 l1与l2重合 l1与l2相交 l1与l2垂直 分析 利用两直线平行 重合 相交 垂直的条件求解 考点一两直线位置关系的判定 题型分析 返回目录 解析 由 得m 7 当m 7时 l1 l2 由 得m 1 当m 1时 l1与l2重合 由 得m 1且m 7 当m 1且m 7时 l1与l2相交 由 m 3 2 4 m 5 0 得m 当m 时 l1与l2垂直 返回目录 评析 1 垂直有两种情况 一种是一条直线的斜率为0 另一条直线的斜率不存在 另一种就是斜率都存在 且两个斜率的积为 1 2 两条直线平行有两种情况 一种就是斜率都不存在 另一种就是斜率都存在并且相等 3 两条直线重合即方程是相同的 对应演练 已知两直线l1 mx 8y n 0和l2 2x my 1 0 试确定m n的值 使 1 l1与l2相交于点P m 1 2 l1 l2 3 l1 l2 且l1在y轴上的截距为 1 返回目录 1 m2 8 n 0 且2m m 1 0 m 1 n 7 2 由m m 8 2 0 得m 4 由8 1 n m 0 得n 2 即m 4 n 2时 或m 4 n 2时 l1 l2 3 当且仅当m 2 8 m 0 即m 0时 l1 l2 又 1 n 8 即m 0 n 8时 l1 l2 且l1在y轴上的截距为 1 返回目录 返回目录 已知直线l过点P 3 1 且被两平行线l1 x y 1 0 l2 x y 6 0截得的线段长为5 求直线l的方程 考点二距离公式的应用 分析 可设点斜式方程 求与两直线的交点 利用两点间距离公式求解 解析 解法一 若直线l的斜率不存在 则直线l的方程为x 3 此时与l1 l2的交点分别是A 3 4 B 3 9 截得的线段长 AB 4 9 5 符合题意 若直线l的斜率存在 则设直线l的方程为y k x 3 1 分别与直线l1 l2的方程联立 y k x 3 1x y 1 0 y k x 3 1x y 6 0 由两点间的距离公式 得 2 2 25 解得k 0 即所求直线方程为y 1 综上可知 直线l的方程为x 3或y 1 返回目录 由 由 A 解得 B 解得 解法二 设直线l与l1 l2分别相交于A x1 y1 B x2 y2 则x1 y1 1 0 x2 y2 6 0 两式相减 得 x1 x2 y1 y2 5 又 x1 x2 2 y1 y2 2 25 x1 x2 5x1 x2 0y1 y2 0y1 y2 5 由上可知 直线l的倾斜角分别为0 和90 故所求的直线方程为x 3或y 1 返回目录 或 联立 可得 返回目录 评析 这类题一般有三种情况 被两已知平行直线截得的线段的定长为a的直线 当a小于两平行线间距离时无解 当a d时有唯一解 当a d时有且只有两解 本题解法一采用通法通解 解法二采用设而不求 先设交点坐标 利用整体思想求解 返回目录 对应演练 解法一 设直线l的方程为y 2 k x 1 即kx y k 2 0 由题意知即 3k 1 3k 3 k 直线l的方程为y 2 x 1 即x 3y 5 0 当直线l的斜率不存在时 直线方程为x 1 也符合题意 求过点P 1 2 且与点A 2 3 和B 4 5 距离相等的直线l的方程 解法二 当AB l时 有k kAB 直线l的方程为y 2 x 1 即x 3y 5 0 当l过AB的中点时 AB中点坐标为 1 2 直线AB的方程为x 1 故所求直线l的方程为x 3y 5 0或x 1 返回目录 返回目录 求直线l1 y 2x 3关于直线l y x 1对称的直线l2的方程 考点三对称问题 分析 转化为点关于直线的对称 利用方程组求解 y 2x 3y x 1 2 1 在l1上任取一点A 0 3 则A关于直线l的对称点 1x1 2y1 1 即B 2 1 l2的方程为y 1 x 2 即x 2y 0 返回目录 得直线l1与l2的交点坐标为 解析 解法一 由 B x1 y1 一定在l2上 由 得 解法二 设所求直线上一点P x y 则在直线l1上必存在一点P1 x0 y0 与点P关于直线l对称 由题设 直线PP1与直线l垂直 且线段PP1的中点P2 在直线l上 1 1x0 y 1 y0 x 1 代入直线l1 y 2x 3得x 1 2 y 1 3 整理得x 2y 0 所求直线方程为x 2y 0 返回目录 变形得 y 2x 3y x 1 设直线l2的方程为y 1 k x 2 即kx y 2k 1 0 在直线l上任取一点 1 2 由题设知点 1 2 到直线l1 l2的距离相等 由点到直线的距离公式得解得k k 2舍去 直线l2的方程为x 2y 0 返回目录 解法三 由 知直线l1与l的交点坐标为 2 1 返回目录 评析 1 对称问题是解析几何中的一个重要题型 是高考热点之一 两条曲线关于一条直线对称常转化为曲线上的点关于直线对称来解决 求点P x0 y0 关于直线l Ax By C 0的对称点Q x1 y1 的坐标 可利用PQ l及线段PQ被l平分这两个条件建立方程组求解 本题解法二就是利用这种方法结合 代入法 求轨迹方程的思想方法解题的 这是解这类问题的一个通法 2 两点关于点对称 两点关于直线对称的常用结论 点 x y 关于x轴的对称点为 x y 点 x y 关于y轴的对称点为 x y 点 x y 关于原点的对称点为 x y 点 x y 关于直线x y 0的对称点为 y x 点 x y 关于直线x y 0的对称点为 y x 返回目录 对应演练 已知直线l x y 1 0 l1 2x y 2 0 若直线l2与l1关于l对称 则l2的方程是 A x 2y 1 0B x 2y 1 0C x y 1 0D x 2y 1 0 B l1与l2关于l对称 则l1上任一点关于l的对称点都在l2上 故l与l1的交点 1 0 在l2上 又易知 0 2 为l1上一点 设其关于l的对称点为 x y 则 1 0 x 1 1 y 1 1 1 为l2上两点 可得l2的方程为x 2y 1 0 故应选B 返回目录 得 即 1 0 返回目录 考点四直线系方程的应用 求经过直线l1 3x 2y 1 0和l2 5x 2y 1 0的交点 且垂直于直线l3 3x 5y 6 0的直线l的方程 分析 1 先求出直线l1与l2的交点 然后利用点斜式求出直线方程 2 可利用垂直直线系方程求解 返回目录 解析 解法一 先解方程组3x 2y 1 05x 2y 1 0 得l1 l2的交点 1 2 再由l3的斜率为求出l的斜率为 于是由直线的点斜式方程求出l y 2 x 1 即5x 3y 1 0 解法二 l l3 故l是直线系5x 3y C 0中的一条直线 而l过l1 l2的交点 1 2 故5 1 3 2 C 0 由此求出C 1 故l的方程为5x 3y 1 0 解法三 l过l1 l2的交点 故l是直线系3x 2y 1 5x 2y 1 0中的一条 将其整理 得 3 5 x 2 2 y 1 0 其斜率 解得 代入直线系方程即得l的方程为5x 3y 1 0 返回目录 解法四 l l3 故l属于直线系5x 3y C 0 又l过l1 l2的交点 故l又属于直线系 3 5 x 2 2 y 1 0 则 是同一直线 必有又 C 1 代入 即得l的方程为5x 3y 1 0 返回目录 由等比定理 得 评析 1 解法一是通法通解 用了求交点及两直线垂直时斜率之间的关系求出斜率 然后利用点斜式求出方程 解法二与解法三比较灵活 用了垂直和相交的直线系方程 运算较简捷 2 常见的直线系方程 与直线Ax By C 0平行的直线系方程是Ax By m 0 m R且m C 与直线Ax By C 0垂直的直线系方程是Bx Ay m 0 m R 过直线l1 A1x B1y C1 0与l2 A2x B2y C2 0的交点的直线系方程 A1x B1y C1 A2x B2y C2 0 是实数 但不包括l2 应用直线系方程 可比较快捷地求出与已知直线平行或垂直的直线方程 利用直线系方程 可解决与相交和过定点有关的问题 返回目录 对应演练 过两直线7x 5y 24 0与x y 0的交点 且与点P 5 1 的距离为的直线的方程为 3x y 4 0 设所求的直线方程为7x 5y 24 x y 0 即 7 x 5 y 24 0 解得 11 故所求直线方程为3x y 4 0 返回目录 考点五直线中的最值问题 在直线l 3x y 1 0上求一点P 使得 1 P到A 4 1 和B 0 4 的距离之差最大 2 P到A 4 1 和C 3 4 的距离之和最小 返回目录 分析 设B关于l的对称点为B AB 与l的交点P满足 1 C关于l的对称点为C AC 与l的交点Q满足 2 事实上 对于 1 若P 是l上异于P的点 则 P A P B P A P B AC QA QC 返回目录 解析 1 如图所示 设点B关于l的对称点B 的坐标为 a b 则kBB kl 1 即3 1 a 3b 12 0 又由于线段BB 的中点坐标为 且在直线l上 3 1 0 即3a b 6 0 解 得a 3 b 3 B 3 3 于是AB 的方程为 即2x y 9 0 3x y 1 0 x 22x y 9 0 y 5 即l与AB 的交点坐标为P 2 5 返回目录 解 得 2 如图所示 设C关于l的对称点为C 求出C 的坐标为 AC 所在直线的方程为19x 17y 93 0 AC 和l交点坐标为 则P点坐标为 返回目录 评析 1 在直线l上求一点P 使P到两定点的距离之和最小 当两定点A B在直线l异侧时 由两点之间线段最短及三角形中任意两边之和都大于第三边可知 点P为AB连线与l的交点 点P到两定点距离之和的最小值为 AB 的长度 如图 P A P B AB PA PB 当且仅当A B P三点共线时等式成立 返回目录 当两定点A B在直线l的同侧时 作点A关于直线l的对称点为A 连结A B交直线l于点P 则点P到两定点A B的距离之和最小 2 在直线l上求一点P 使P到两定点的距离之差的绝对值最大 返回目录 当两定点A B在直线l的同侧时 AB连线与l不平行 连结A B两点所在的直线 交直线l于点P 如图 在l上任取一点P 则有当 P B P A AB PB PA 当P 与P两点重合时 等号成立 最大的值为 AB 重合时 等号成立 最大值为 A B 当两定点A B在直线l的异侧时 作点A关于直线l的对称点A 连结A B 交l于点P 如图可知 PB PA A B 时 达到最大 在l上任取一点P 则 P B P A A B 当P 点与P点重合时 等号成立 最大值为 A B 返回目录 设点A 3 5 和B 2 15 在直线l 3x 4y 4 0上 找一点P 使 PA PB 为最小 并求这个最小值 对应演练 返回目录 设点A关于直线l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度健身服务会员合同说明
- 2024年度特许经营合同(具体经营范围和许可条件)
- 2024年度旅游服务管理合同
- 2024年度智能工厂生产线升级与维护合同
- 2024年度深圳光伏发电项目合同
- 自行车减震器市场需求与消费特点分析
- 水上起重机市场需求与消费特点分析
- 04版两托盘租赁合同:租赁物的维修与保养责任
- 化妆用过氧化氢市场发展现状调查及供需格局分析预测报告
- 2024年度二手房交易新政推行合同
- 理论力学(金尚年-马永利编著)课后习题答案详解
- GB/T 307.1-1994滚动轴承向心轴承公差
- GB/T 19010-2009质量管理顾客满意组织行为规范指南
- GA 479-2004耐火电缆槽盒
- 化学品安全技术说明书汽油安全技术说明书
- 其它课程光面爆破技术课件
- 小学数学西南师大五年级上册四小数混合运算 问题解决 省赛获奖
- 《初中英语写作》课件
- 2019新人教版高中生物必修二全册重点知识点归纳总结(遗传与进化复习必背)
- 九三学社申请入社简历表
- 《学会感恩与爱同行》PPT主题班会课件
评论
0/150
提交评论