公考:数学部分经典公式及解题方法.doc_第1页
公考:数学部分经典公式及解题方法.doc_第2页
公考:数学部分经典公式及解题方法.doc_第3页
公考:数学部分经典公式及解题方法.doc_第4页
公考:数学部分经典公式及解题方法.doc_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.熟记各种数字的运算关系。如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数字推理题材的前提。常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29.(4)开方关系:4-2,9-3,16-4.以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。当看到这些数字时,立刻就能想到平方立方的可能性。熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,() 或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。根号运算掌握简单规律则可,也不难。3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。又分为等差、移动求和或差两种。(1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时,用 口算。12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。1,2,3,5,(),13A 9 B 11 C 8D7选C。1+2=3,2+3=5,3+5=8,5+8=132,5,7,(),19,31,50A 12 B 13 C 10 D11选A0,1,1,2,4,7,13,()A 22B 23C 24D 25选C。注意此题为前三项之和等于下一项。一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。5,3,2,1,1,()A-3B-2 C 0D2选C。2.乘除关系。又分为等比、移动求积或商两种(1)等比。从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。8,12,18,27,(40.5)后项与前项之比为1.5。6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。从第三项起,每一项都是前两项之积或商。2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以21,7,8,57,(457)后项为前两项之积+13.平方关系 1,4,9,16,25,(36),49 66,83,102,123,(146) 8,9,10,11,12的平方后+24.立方关系 1,8,27,(81),125 3,10,29,(83),127 立方后+2 0,1,2,9,(730)有难度,后项为前项的立方+15.分数数列。一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进 行简单的通分,则可得出答案 1/2 4/3 9/4 16/5 25/6 (36/7) 分子为等比,分母为等差 2/3 1/2 2/5 1/3(1/4) 将1/2化为2/4,1/3化为2/6,可知 下一个为2/86.带根号的数列。这种题难度一般也不大,掌握根号的简单运算则可。限于计算机水平比较烂,打不出根号,无法列题。7.质数数列 2,3,5,(7),114,6,10,14,22,(26) 质数数列除以220,22,25,30,37,(48) 后项与前项相减得质数数列。8.双重数列。又分为三种:(1)每两项为一组,如 1,3,3,9,5,15,7,(21)第一与第二,第三与第四等每两项后项与前项之比为3 2,5,7,10,9,12,10,(13)每两项之差为3 1/7,14,1/21,42,1/36,72,1/52,()两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。 22,39,25,38,31,37,40,36,(52) 由两个数列,22,25,31,40,()和39,38,37,36组成,相互隔开,均为等差。 34,36,35,35,(36),34,37,(33) 由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。 2.01,4.03, 8.04, 16.07, (32.11) 整数部分为等比,小数部分为移动求和数列。双重数列难题也较少。能看出是双重数列,题目一般已经解出。特别是前两种,当数字的个数超过7个时,为双重数列的可能性相当大。9.组合数列。此种数列最难。前面8种数列,单独出题几乎没有难题,也出不了难题,但8种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。只有在熟悉前面所述8种关系的基础上,才能较好较快地解决这类题。 1,1,3,7,17,41()A 89B 99 C 109D 119选B。此为移动求和与乘除关系组合。第三项为第二项*2+第一项65,35,17,3,()A 1 B 2 C0 D4选A。平方关系与和差关系组合,分别为8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一个应为0的平方+1=14,6,10,18,34,()A 50 B 64 C 66 D 68选C。各差关系与等比关系组合。依次相减,得2,4,8,16(),可推知下一个为32,32+34=666,15,35,77,()A 106B117C 136D 163选D。等差与等比组合。前项*2+3,5,7依次得后项,得出下一个应为77*2+9=1632,8,24,64,()A 160B512 C 124 D 164选A。此题较复杂,幂数列与等差数列组合。2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一个则为5*2的5次方=1600,6,24,60,120,()A 186B 210C 220D 226选B。和差与立方关系组合。0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5。1,4,8,14,24,42,()A 76 B 66 C 64 D68选A。两个等差与一个等比数列组合依次相减,得3,4,6,10,18,()再相减,得1,2,4,8,(),此为等比数列,下一个为16,倒推可知选A。10.其他数列。 2,6,12,20,()A 40 B 32 C30 D 28选C。2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=30 1,1,2,6,24,()A48B96C 120D 144选C。后项=前项*递增数列。1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*5 1,4,8,13,16,20,()A20 B 25 C 27 D28选B。每三项为一重复,依次相减得3,4,5。下个重复也为3,4,5,推知得25。 27,16,5,(),1/7A16 B 1 C 0 D 2选B。依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。这种数列一般难题也较多。某些数学应用问题的固定算法数学运算在狂做题之外,更需要冷静下来做做相关题型的总结,这样才能达到熟悉题型,事半功倍的效果。 仅供参考理解,不提倡盲目死记。 利润率利润/成本 增长率增长额/第一年 S1995S2002 年均增长率:即年均增长幅度除以第一年 (S2002S1995)/7/ S1995 利率总额年数年利率 平均效率总量/总时间 在抽水问题中:动机效率(台数虚拟单位效率1)渗水率时间 是一个恒定量。 牛吃草问题中:吃草效率(头数虚拟单位效率1)草生长率时间 是一个恒定量。 球体积4PIr的立方/3 球表面积4PIr的平方 锥体体积1/3 sh 等差:AnA1(n1)d Sn=n(A1+An)/2 等比:An=A1q的n-1次方 Sn=A1(1-q的n次方)/1-q 立方和公式: a3b3=(a+b)(a2-ab+b2) 立方差公式: a3b3=(ab)(a2+ab+b2) 求24、60最小公倍数: 两数最小公倍数为22325 末数求值:2343343 的最后两位 即:434349 1海里1.852千米 用求包裹立方体的纸的大小,要求1.纸的面积大于立方体表面积 2.要求纸的长宽要大于立方体的展开的边幅。 过多少天是星期几,关键看多少天能否被7整除,余几天。 91992除以7的余数与 21992除以7的余数相等。 遇到图形面积题,没必要死算,积极考虑补缺移填合成规则图形。 六所学校派代表开会,选所有路程最短的学校,应重点考虑派代表最多的学校。 甲除以13余9 甲13m9 (m为正整数) Ab与ba的差是s的4倍,则有4sa10b(b10a) 经常用于祖孙三代年龄问题 多位数相加时:abcddcba 应用观察法,首数乘乘ad,尾数乘乘da。 3条纸带首尾相接,有2个1厘米的重合点,则比不重合相接牺牲了2厘米。 子分财产问题。长子拿一份和剩下1/10。次子拿两份和剩下1/10,结果所有儿子拿的一样多。 则考虑最后两个儿子。最后的 n 倒数第二 n-1+n/9 很多时候,8个以内的穷举法是最笨却最实际的办法。 P除以10余9,除以9余8,除以8余7, 100 至1000以内的数 9810720,则P359、719 关于中国剩余定理的应用:一个数除以5余3,除以3余2,除以4余1。求该数最小值。 则 (5,3,4)60。有5 33 4 5 4 ,使15或其倍数 除以4余1,则该数为45, 使12或其倍数 除以5余1,则该数为36。使20或其倍数 除以3余1,则该数为40。所以45136340260353 关于闰年的判定:1.能被4整除,但不能被100整除的年份都是闰年 2.能被100整除,又能被400整除的年份是闰年 不符合这两个条件的年份不是闰年 300张牌,总是拿掉奇数牌。最后剩下的是2的n次方300,n的最大值。 总是拿掉偶数牌,最后剩下的是第一张牌。 N个人彼此握手,则总握手数 s(n1)a1a(n1)/2=(n1)11+(n-2)/2=n2n/2 三个圆圈相交:S1S2+S3S(总数)2j(三块共有)j1(两块共有)j2(两块共有)j3(两块共有)(记住公式必须与画图结合起来!此公式在学生参加兴趣爱好等问题上慎用!因为两个兴趣组都参加的真正人数应该是题目中给你的参加两个兴趣班人数再减去三个兴趣班都参加的人数) 英语数学语文三个小组,每人至少参加一组,总共35人,英17人,数30人,语13人,5人全参加,问只参加一组多少人? 设x个学生加了一组. x+2*(35-5-x)+3*5=17+30+13 x=15 对于四人篮球,五次传球后回转本人的问题,应用组合逐个计算,分类讨论再相加。其中原始点是讨论的分歧点。 几个圆相交最多把平面分割成N2N+2 n条线最多能画成多少个不重叠的三角形 F(n)F(n1) F(n2) 如 f(11)19 边长为N的立方体由边长为1的小立方体组成,一共有N3个小立方体,露在外面的小立方体共有 N3(N2)3 边长为ABC的长方体由边长为1的小立方体组成,一共有abc个小立方体,露在外面的小立方体共有 abc(a2)(b2)(c2) 已知四个连续自然数的积。四个连续自然数为两个奇数和两个偶数,它们的和可以被2整除,但是不能被4整除。 A除以B商是5余5,A除以C商是6余6,A除以D商是7余7,则A是5、6、7的倍数 1000*999*998*1 的结果后有多少个连续的零,则为1000/5200 1000/25=40 1000/125=8 1000/625=1.235 则有249个零 连续4个自然数(如1、2、3、4) 两奇两偶,记住:两个奇数和的一半是偶数 两个偶数和的一半是奇数。 去程速度a 来程速度b,平均速度为v2ab/(ab) 火车.自行车同向行进,速度分别为a、b,火车超过自行车时间为t, 可知火车身长为s(ab)t 环形跑道周长500米,甲乙两人按顺时针沿环形跑道同时同地起跑,甲60米/分,乙50米/分,两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟? 有问题的解法: 解为乙跑的时间乙休息的时间甲跑的时间甲休息的时间,设乙跑x米,甲跑了x500米 列为: x/50+x/200=(x+500)/60+(x+500)/200 其他解法:60x50x500 x50 5050*60/200+50*50/200=77 关于含“1”的页数问题,总结出的公式就是:总页数的1/5,再加上100。 ll22nnn(n1)(2n1)6 钟表几分重合,公式为: x/5=(x+a)/60 a时钟前面的格数。 加速度公式 : SV0T+(aT/2)T V0:初速度 aT:末速度 T:经过的时间 剩余价值与可变资本的比例关系称为剩余价值率 利息=本金利率时间 记住:现在银行利息计算采用单息制,而非利滚利的复息制,用“乘以”,而不用“乘方” 溶液配比问题的“十字交叉法” 某A溶液a克2,某乙溶液b克4,按如何比例可配成3的溶液 a2b43(ab) 算出a/b即可 有很多排列组合问题可以用排除法来做。 如:五信装封,全错种类的问题。不建议用排列组合正面去算,很复杂。可以用(总装法5!)减去(全装对装错2装错3装错4)。 ps.想想为什么不能装错1封信呢?_ 1.2.2.3.3.3六个数字可组成多少个不重复的数字:先排1,有6种,再排2有5种,再排3有1种。即有651种 数学运算在狂做题之外,更需要冷静下来做做相关题型的总结,这样才能达到熟悉题型,事半功倍的效果。 仅供参考理解,不提倡盲目死记。 利润率利润/成本 增长率增长额/第一年 S1995S2002 年均增长率:即年均增长幅度除以第一年 (S2002S1995)/7/ S1995 利率总额年数年利率 平均效率总量/总时间 在抽水问题中:动机效率(台数虚拟单位效率1)渗水率时间 是一个恒定量。 牛吃草问题中:吃草效率(头数虚拟单位效率1)草生长率时间 是一个恒定量。 球体积4PIr的立方/3 球表面积4PIr的平方 锥体体积1/3 sh 等差:AnA1(n1)d Sn=n(A1+An)/2 等比:An=A1q的n-1次方 Sn=A1(1-q的n次方)/1-q 立方和公式: a3b3=(a+b)(a2-ab+b2) 立方差公式: a3b3=(ab)(a2+ab+b2) 求24、60最小公倍数: 两数最小公倍数为22325 末数求值:2343343 的最后两位 即:434349 1海里1.852千米 用求包裹立方体的纸的大小,要求1.纸的面积大于立方体表面积 2.要求纸的长宽要大于立方体的展开的边幅。 过多少天是星期几,关键看多少天能否被7整除,余几天。 91992除以7的余数与 21992除以7的余数相等。 遇到图形面积题,没必要死算,积极考虑补缺移填合成规则图形。 六所学校派代表开会,选所有路程最短的学校,应重点考虑派代表最多的学校。 甲除以13余9 甲13m9 (m为正整数) Ab与ba的差是s的4倍,则有4sa10b(b10a) 经常用于祖孙三代年龄问题 多位数相加时:abcddcba 应用观察法,首数乘乘ad,尾数乘乘da。 3条纸带首尾相接,有2个1厘米的重合点,则比不重合相接牺牲了2厘米。 子分财产问题。长子拿一份和剩下1/10。次子拿两份和剩下1/10,结果所有儿子拿的一样多。 则考虑最后两个儿子。最后的 n 倒数第二 n-1+n/9 很多时候,8个以内的穷举法是最笨却最实际的办法。 P除以10余9,除以9余8,除以8余7, 100 至1000以内的数 9810720,则P359、719 关于中国剩余定理的应用:一个数除以5余3,除以3余2,除以4余1。求该数最小值。 则 (5,3,4)60。有5 33 4 5 4 ,使15或其倍数 除以4余1,则该数为45, 使12或其倍数 除以5余1,则该数为36。使20或其倍数 除以3余1,则该数为40。所以45136340260353 关于闰年的判定:1.能被4整除,但不能被100整除的年份都是闰年 2.能被100整除,又能被400整除的年份是闰年 不符合这两个条件的年份不是闰年 300张牌,总是拿掉奇数牌。最后剩下的是2的n次方300,n的最大值。 总是拿掉偶数牌,最后剩下的是第一张牌。 N个人彼此握手,则总握手数 s(n1)a1a(n1)/2=(n1)11+(n-2)/2=n2n/2 三个圆圈相交:S1S2+S3S(总数)2j(三块共有)j1(两块共有)j2(两块共有)j3(两块共有)(记住公式必须与画图结合起来!此公式在学生参加兴趣爱好等问题上慎用!因为两个兴趣组都参加的真正人数应该是题目中给你的参加两个兴趣班人数再减去三个兴趣班都参加的人数) 英语数学语文三个小组,每人至少参加一组,总共35人,英17人,数30人,语13人,5人全参加,问只参加一组多少人? 设x个学生加了一组. x+2*(35-5-x)+3*5=17+30+13 x=15 对于四人篮球,五次传球后回转本人的问题,应用组合逐个计算,分类讨论再相加。其中原始点是讨论的分歧点。 几个圆相交最多把平面分割成N2N+2 n条线最多能画成多少个不重叠的三角形 F(n)F(n1) F(n2) 如 f(11)19 边长为N的立方体由边长为1的小立方体组成,一共有N3个小立方体,露在外面的小立方体共有 N3(N2)3 边长为ABC的长方体由边长为1的小立方体组成,一共有abc个小立方体,露在外面的小立方体共有 abc(a2)(b2)(c2) 已知四个连续自然数的积。四个连续自然数为两个奇数和两个偶数,它们的和可以被2整除,但是不能被4整除。 A除以B商是5余5,A除以C商是6余6,A除以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论