高考数学 黄金考点精析精训 考点28 统计 文.doc_第1页
高考数学 黄金考点精析精训 考点28 统计 文.doc_第2页
高考数学 黄金考点精析精训 考点28 统计 文.doc_第3页
高考数学 黄金考点精析精训 考点28 统计 文.doc_第4页
高考数学 黄金考点精析精训 考点28 统计 文.doc_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点28 统计【考点剖析】1.最新考试说明:1.随机抽样 (1)理解随机抽样的必要性和重要性. (2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. 2.用样本估计总体 (1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎 叶图,理解它们各自的特点. (2)理解样本数据标准差的意义和作用,会计算数据标准差. (3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释. (4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本 数字特征,理解用样本估计总体的思想. (5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. 3.变量的相关性 (1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系. (2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 4.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题. (1)独立性检验 了解独立性检验(只要求 22 列联表)的基本思想、方法及其简单应用. (2)回归分析 了解回归分析的基本思想、方法及其简单应用. 2.命题方向预测:统计在高考中选择题、填空题、解答题中均有出现,选择题、填空题往往单独考查统计知识,较为容易;解答题常与概率知识放在一块考查,以应用题的面目出现,难度以中档题为主3.名师二级结论:两个异同(1)众数、中位数与平均数的异同众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质. 众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题某些数据的变动对中位数可能没有影响中位数可能出现在所给数据中,也可能不在所给数据中当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势(2)标准差与方差的异同标准差、方差描述了一组数据围绕平均数波动的大小标准差、方差越大,数据的离散程度就越大;标准差、方差越小,数据的离散程度则越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差三个特征利用频率分布直方图估计样本的数字特征:(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和(3)众数:最高的矩形的中点的横坐标正确运用频率分布条形图和直方图,由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体分布,一般地,样本容量越大,估计越精确要求会作、会用频率分布条形图和直方图三种抽样方法:在三种抽样中,简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法是建立在它的基础上的,三种抽样方法的共同点:它们都是等概率抽样,体现了抽样的公平性;三种抽样方法各有其特点和适用范围,在抽样实践中要根据具体情况选用相应的抽样方法分析两个变量相关关系的常用方法:一是利用散点图进行判断:把样本数据表示的点在平面直角坐标系中作出,从而得到散点图,如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系;二是利用相关系数r进行判断:|r|1而且|r|越接近于1,相关程度越大; |r|越接近于0,相关程度越小线性回归方程参考公式: 掌握独立性检验的一般步骤:根据样本数据制成22列联表根据公式,计算k2的值比较k2与临界值的大小关系作统计推断【考点分类】热点一 随机抽样1.【2016高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米)1.961.921.821.801.781.761.741.721.681.6030秒跳绳(单位:次)63a7560637270a1b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则a.2号学生进入30秒跳绳决赛 b.5号学生进入30秒跳绳决赛 c.8号学生进入30秒跳绳决赛 d.9号学生进入30秒跳绳决赛【答案】b2.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有人,则该样本的老年教师人数为( )a b c d类别人数老年教师中年教师青年教师合计【答案】c【解析】由题意,总体中青年教师与老年教师比例为;设样本中老年教师的人数为,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即,解得,故选c.3.【2017江苏,3】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.【答案】18【方法总结】类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的机会均等从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成(1)当总体中的个体数较多,并且没有明显的层次差异时,可用系统抽样的方法,把总体分成均衡的几部分,按照预先制定的规则,从每一部分抽取一个个体,得到需要的样本(2)在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除热点二 频率分布直方图的绘制与应用1.【2016高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(a)56(b)60(c)120(d)140【答案】d【解析】由频率分布直方图知,自习时间不少于22.5小时的有,选d.2.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示. ()直方图中的值为_;()在这些用户中,用电量落在区间内的户数为_. 【答案】(1)0.0044 (2)70【解析】,用户落在间的概率,故在这个区间的用户人.3.【2016高考北京文数】某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(i)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(ii)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】()3;()10.5元.(ii)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:组号12345678分组频率根据题意,该市居民该月的人均水费估计为:(元)【方法总结】1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率组距.2频率分布直方图中各小长方形的面积之和为1,因此在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比3频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观热点二、茎叶图的应用1.【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )a. 3,5 b. 5,5 c. 3,7 d. 5,7 【答案】a【解析】2.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,中位数分别为,则()a , b, c, d,【答案】【解析】直接根据茎叶图判断,选b3.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为号,再用系统抽样方法从中抽取7人,则其中成绩在区间上的运动员人数是 .【答案】.【解析】由茎叶图可知,在区间的人数为,再由系统抽样的性质可知人数为人.【方法总结】由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等热点三 基本数字特征1.【2017课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别为x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是ax1,x2,xn的平均数bx1,x2,xn的标准差cx1,x2,xn的最大值dx1,x2,xn的中位数【答案】b【解析】试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选b2.【2016高考新课标文数】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图图中a点表示十月的平均最高气温约为150c,b点表示四月的平均最低气温约为50c下面叙述不正确的是( )(a) 各月的平均最低气温都在00c以上 (b) 七月的平均温差比一月的平均温差大(c) 三月和十一月的平均最高气温基本相同 (d) 平均气温高于200c的月份有5个【答案】d3.【2016高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_(米).【答案】1.76【解析】将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.4.已知样本数据,的均值,则样本数据,的均值为 【答案】【解析】因为样本数据,的均值,所以样本数据,的均值为,所以答案应填:热点四 变量的相关性与回归分析1.高三年级位学生参加期末考试,某班位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生从这次考试成绩看,在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ;在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 【答案】乙;数学【解析】由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.2.【2018届华大新高考联盟11月测评】某地区2008年至2016年粮食产量的部分数据如下表:(1)求该地区2008年至2016年的粮食年产量与年份之间的线性回归方程;(2)利用(1)中的回归方程,分析2008年至2016年该地区粮食产量的变化情况,并预测该地区 2018年的粮食产量.附:回归直线的斜率和截距的最小二乘估计公式分别为, .【答案】(1);(2)测该地区2018 量为299. 2万吨.【解析】试题分析:(1)计算和,利用的计算公式即可得解;(2)由的意义得该地区粮食产量逐年增加,平均每两年增加6. 5 万吨,将代入中的线性回归方程得预测值.试题解析:(1)由所给数据可以看出,粮食年产量与年份之间是近似直线上升,下面来求线性回归方程,为此对数据预处理如下: 对预处理后的数据,容易算得,.由上述计算结果,知所求线性回归方程为,即.(2)由(1)知, ,故2008年至2016年该地区粮食产量逐年增加,平均每两年增加6. 5 万吨.将代入(1)中的线性回归方程,得,故预测该地区2018 量为299. 2万吨.3.【2016高考新课标文数】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(i)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;(ii)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量附注:参考数据:,2.646.参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:【答案】()理由见解析;()1.82亿吨【解析】()由折线图这数据和附注中参考数据得,因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.()由及()得,所以,关于的回归方程为:.将2016年对应的代入回归方程得:,所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.热点五 独立性检验1.【2017课标ii,文19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1) 记a表示事件“旧养殖法的箱产量低于50kg”,估计a的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg箱产量50kg旧养殖法新养殖法(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。附:p()0.0500.0100.001k3.8416.63510.828 【答案】(1)0.62.(2)有把握(3)新养殖法优于旧养殖法【解析】(2)根据箱产量的频率分布直方图得列联表箱产量50kg箱产量50kg旧养殖法6238新养殖法3466k2= 由于15.7056.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.2.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:()根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;()已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.【答案】()有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; ().【解析】()将列联表中的数据代入公式计算得由于所以有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”()从5名数学系的学生任取3人的一切可能结果所组成的基本事件空间, ,其中表示喜欢甜品的学生,表示不喜欢甜品的学生,由10个基本事件组成,切这些基本事件出现是等可能的用a表示“3人中至多有1人喜欢甜品”这一事件,则事件a是由7个基本事件组成因而【热点预测】1.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )a月接待游客逐月增加b年接待游客量逐年增加c各年的月接待游客量高峰期大致在7,8月d各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】a2.【2018届江苏省南宁市高三摸底】已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )a. 100,20 b. 200,20 c. 200,10 d. 100,10【答案】b【解析】由图可知总学生数是10000人,样本容量为10000=200人,高中生40人,由乙图可知高中生近视率为,所以人数为人,选b.3.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:)制成如图所示的茎叶图.考虑以下结论:甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时的平均气温高于乙地该月14时的平均气温;甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为( )(a) (b) (c) (d) 【答案】【解析】甲地数据为:;乙地数据为:;所以,即正确的有,故选.4.【2018届福建省三明市第一中学高三上第一次月考】下列说法:将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;设有一个回归方程,变量增加一个单位时,平均增加个单位;线性回归方程必过);在一个列联表中,由计算得,则有以上的把握认为这两个变量间有关系其中错误的个数是()a. b. c. d. 【答案】b5.【2018届河南省驻马店市正阳县第二高级中学高三9月考试】具有线性相关关系的两变量满足的一组数据如下表,若与的回归直线方程为 ,则的值为( )a. 4 b. c. 5 d. 6【答案】a【解析】由表中数据得:,根据最小二乘法,将代入回归方程 ,得,故选a.6.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为25万元,则11时到12时的销售额为( )a. 6万元 b. 8万元 c. 10万元 d. 12万元【答案】c【解析】设11时到12时的销售额为万元,依题意有,故选c7.某公司位员工的月工资(单位:元)为,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为(a) , (b), (c), (d),【答案】【解析】由题得:;若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为:均值方差故选8.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图i所示;若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数为( )a、3 b、4 c、5 d、6【答案】b【解析】根据茎叶图中的数据,得;成绩在区间139,151上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间139,151上的运动员应抽取 (人),故选b.9.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_【答案】【解析】由题意得抽样比例为,故应抽取的男生人数为10.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示. ()直方图中的_;()在这些购物者中,消费金额在区间内的购物者的人数为_. 【答案】()3;()6000.【解析】由频率分布直方图及频率和等于1可得,解之得.于是消费金额在区间内频率为,所以消费金额在区间内的购物者的人数为:,故应填3;6000.11.【2017课标3,文18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出的所有可能值,并估计大于零的概率【答案】(1);(2)试题解析:(1)需求量不超过300瓶,即最高气温不高于,从表中可知有54天,所求概率为.(2)的可能值列表如下:最高气温10,15)15,20)20,25)25,30)30,35)35,40)300900900900低于:;:;不低于:大于0的概率为.12.【2017北京,文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:20,30),30,40),80,90,并整理得到如下频率分布直方图:()从总体的400名学生中随机抽取一人,估计其分数小于70的概率;()已知样本中分数小于40的学生有5人,试估计总体中分数在区间40,50)内的人数;()已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等试估计总体中男生和女生人数的比例【答案】()0.4;()5人;().【解析】试题分析:()根据频率分布直方图,表示分数大于等于70的概率,就求后两个矩形的面积;()根据公式频数等于频率求解;()首先计算分数大于等于70分的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100-男生人数就是女生人数.试题解析:()根据频率分布直方图可知,样本中分数不小于70的频率为,所以样本中分数小于70的频率为.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.()根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为.13.【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm)下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸995101299699610019929981004抽取次序910111213141516零件尺寸10269911013100292210041005995经计算得,其中为抽取的第个零件的尺寸,(1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小)(2)一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论