微工厂中可重构微型机床的发展状况外文文献翻译@中英文翻译@外文翻译_第1页
微工厂中可重构微型机床的发展状况外文文献翻译@中英文翻译@外文翻译_第2页
微工厂中可重构微型机床的发展状况外文文献翻译@中英文翻译@外文翻译_第3页
微工厂中可重构微型机床的发展状况外文文献翻译@中英文翻译@外文翻译_第4页
微工厂中可重构微型机床的发展状况外文文献翻译@中英文翻译@外文翻译_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

machine tools. Proc ASME IMECE 04, Anaheim, CA L2l Farago F, Curtis MA ( l994) Handbook of dimensional measurement. Industrial Press Inc. L22 Bosch JA ( ed) ( l995) Coordinate measuring machines and systems. Marcel Dekker, New York L23 Coelho AG, Mourao AF, Navas HG ( 2004) A rational way to select a measuring system for mechanical parts inspection. Proc of ICAD 04, Seoul, Korea L24 Ramesh M, Yip-Hoi D, Dutta D ( 200l) Feature-based shape similarity measurement for retrieval of mechanical parts. J Comput Inf Sci Eng l:245-256 L25 Koren Y, Kota S ( l999) Reconfigurable machine tool. US Patent # 5,943,750 L26 Landers RG, Min BK, Koren Y ( 200l) Reconfigurable machine tools. Ann CIRP 50:269- 274 L27 Katz R, Chung H ( l999) Design of an experimental arch type reconfigurable machine tool. Proc 2000 JUSFA, 2000 Japan- USA Symposium on Flexible Automation, July 23-26, 2000, Ann Arbor, MI L28 Katz R, Yook J, Koren Y ( 2004) Control of reconfigurable machine tool. ASME J Dyn Syst Meas Control l26:397-405 L29 Koren Y, Katz R ( 2003) Reconfigurable apparatus and method for Inspection during a Manufacturing Process. US Patent # 6,567,l62 L30 Katz R, Zuteck MG, Koren Y ( 2002) Rapid inspection and error-tracing methodology for machining production lines. CIRP ICME 02, Ischia ( Naples) , Italy L3l Katz R, Zuteck MG, Koren Y ( 2002) Reconfigurable inspection machine for machining production lines. Proc Global Power Train Conference 2002, Ann Arbor, MI L32 Barhak J, Katz R ( 2003) Interpretation of laser measurements produced by the reconfigurable inspection machine using the “ virtual ball” method. Proc CIRP- 2nd Intl. Conference on RMS 03, Ann Arbor, MI L33 Barhak J, Katz R ( 2004) Rapid non-contact measurements of engine cylinder heads with the reconfigurable inspection machine. CIRP ICME 04, Sorrento, Italy L34 Gupta A, Segall S, Katz R ( 2004) Motion stage error compensation technique with verification methodology for a reconfigurable inspection machine. ASME Proc 2004 Japan- USA Symposium on Flexible Automation L35 Barhak J, Djurdjanovic D, Spicer P, Katz R ( 2005) Integration of reconfigurable inspection with stream of variations methodology. Int J Mach Tools Manuf 45( 4-5) :407-4l9 L36 Kalyanaraman A, Katz R, Lock T, Spicer P, Warlick Z, ( 2004) Cylinder head surface porosity inspection. University of Michigan, ERC RMS TR-05l-04 L37 Bair N, Kidwai T, Koren Y, Mehrabi M, Wayne S, Prater L ( 2002) Design of a reconfigurable assembly system for manufacturing heat exchangers. Japan-USA Symposium on Flexible Manufacturing, Julyl4-l9, Hiroshima L38 Kidwai T ( 2002) Design of a reconfigurable core-builder: an assem bly machine for heat exchangers. University of Michigan, ERC RMS-TR-056-05 附录 2:Development of a Reconfigurable Micro Machine Tool for Microfactory Sung-Hyun Jang, Yong-Min Jung, Hyun-Young Hwang, Young-Hyu Choi2 and Jong-Kwon Park3 Graduate School, Dept. of Mechanical Design & Manufacturing, Changwon National University, Changwon, Korea ( Tel: +82-55-267-ll07; E-mail: nakanygchangwon.ac.kr) 2 Department of Mechatronics, Changwon National University, Changwon, Korea ( Tel: +82-55-2l3-3623; E-mail: yhchoigchangwon.ac.kr) 3Korea Institute of Machinery & Materials, Daejeon, Korea ( Tel: +82-42-868-7ll6; E-mail: jkparkgkimm.re.kr) Abstract: Recently, there have been several interesting researches on the microfactory especially in Japan, U.S., and Korea. Since the microfactory possess the advantage of flexible manufacturing system and or reconfigurable manufacturing system, we introduced the concept of modular reconfigurable machine structure in our micro machine tool design for microfactory. Modular reconfigurable machine tools can easily perform machining processes of different kinds such as milling, turning, drilling and or grinding by simply adding or exchanging machine tool units or modules. In this study, we have developed a reconfigurable micro machine tool for microfactory, which can be reconfigured from a milling machine to a tuning lathe or vice versa. In structural design of the machine tools, we already studied a new theoretical method of creating machine configurations of modular-reconfigurable machine tools ( MRMT) in the preliminary design stage. According to our design methodology, we designed the structural modules and RMTs after reviewing all feasible configurations in the preliminary design stage. By using some modules, we have built RMT based the micro milling machine with enough stiffness. The 3-axis micro milling machine ofRMT has a mini-desktop size of 300 mm X200 mm X320 mm and its travel volume is l0 l0X l0 mm3. Dynamic characteristics including natural frequencies and dynamic stiffness of the developed MRMT were analyzed and examined by using F.E.M. and impact hammer test. And we carried out positioning control test and cutting test using a motion controller. Consequently, we successfully developed reconfigurable micro machine tool with reconfigurable structures of milling machine and turning machine for microfactory by means of configuration simulation, structure and module design, FE analysis, and dynamic characteristic tests such as a modal test and dynamic compliance test. Keywords: Microfactory, Reconfigurable micro machine tool ( RmMT) , Structural module, Machine configuration, Cryptographic mapping, Machining function proving 2. INTRODUCTION During the last few decades, there were a great many efforts to improve a technology for the manufacturing systems, machining process and the development of an advanced machine. The nowadays production system is enlarged various requests such as small quantity batch production, flexible production, cost reduction, and composition of function. The accuracy of machining is not only going to micro and nano scale but the machine tools are miniaturized gradually. Accordingly several researches about CIM, FMS, RMS ( reconfigurable manufacturing system) , and multi-tasking machine has proceeded. Moreover, under the growing interests for On Demand Product, the concept for Microfactory has appeared. Recently, the interests and researches on the microfactory or the micro-fabrication system are remarkably increased. After the initiative research on microfactory by Japan in the l990s, a great variety of studies and developments on micro-fabrication systems have been made in Europe, U.S., and Korea.Ll-3 The advantage of a microfactory is obtaining benefits in view of its potential of miniaturizing or downsizing, resource and energy saving, flexible system. One of the key elements of microfactory is the micro meso scale mechanical machining machine tools. During the last 3 years, several micro meso scale mechanical machining machine tools, such as 3-axis vertical micro milling machine, a miniature micro turning machine, micro EDM, micro punching machine and assembly machine, are developed to construct microfactory system in Korea.L4 Since microfactory possess the advantage of flexible manufacturing system and or reconfigurable manufacturing system, as mentioned above, we introduced the concept of modular reconfigurable machine structure in our micro machine tool design for microfactory. L5-6 Modular reconfigurable machine tools can easily perform machining processes of different kinds such as milling, turning, drilling and or grinding by simply adding or exchanging machine tool units or modules. Although the concept of a modular reconfigurable machine tool is already well known, there is rarely seen the theoretical approach to create structural configurations of a modular reconfigurable machine tool.L7-8 We had studied our theoretical method of creating the machine configurations of modular-reconfigurable machine tools ( MRMT) in the preliminary design stage. L5-6 Our design method consists of dual steps; one is the machine configuration generation step using the cryptographic mapping, the other is the machining ability test step.L5-6 We obtained the final feasible configurations for MRMT in this preliminary design stage. And we concretely designed the structural modules and RMTs after reviewing all feasible configurations. Our RMT model has more than l0 structural modules and 4 functional modules for 3-axis vertical micro milling machine and micro turning machine. And then the dynamic characteristics including natural frequencies and dynamic stiffness of the developed MRMT were analyzed and examined by using F.E.M. and impact hammer test. Finally, we evaluate performance of our prototype RMT. 3. MRMT DESIGN METHODOLOGY Mathematic al representation of connectivity This methodology provides a theoretical method of creating structural configurations of modular reconfigurable micro machine tools in the preliminary design stage. The two key features of our design methodology are the use of cryptographic mapping and machining function proving. Fig. l shows the overview of the methodology. First over all, the information of the modules does store in module library. To generate the machine configurations by using a cryptographic mapping process, the posture vector of each unit module was encoded into binary code and then stored all 68 the structure modules ( graphic files) and associated digital codes in the module library. The posture vector is a vector whose elements represent combining directions at each combining planes of a unit module. Next, the machine configurations were created by using bilinear form expansion of any two adjacent posture vectors and their consecutive multiplication. And the structural configurations in graphic form were obtained by decoding all the binary coded configurations, which are obtained from the above bilinear form expansion of the posture vectors. Finally, the machining ability test step, which is accomplished by using the rule of principal machining motion and scalar product of the direction vectors of the tool and the work-piece for any created machine tool, was carried out. 69 Fig. l Overview of structural configuration design methodology for micro-milling machine Cryptographic mapping is a cryptography based operation including encoding 69 graphic modules into binary digit and decoding to create possible structural configurations from s given module library. Usually the RMT consists of several modular units such as bed, table, column, headstock, spindle, and so on. Therefore we assumed that the shape of module is a hexahedron type module simply. As shown in Fig. 2, this hexahedron type module has six combinable planes which can be connected with other modules and 4 combinable directions for any plane of the module. Fig. 2 Illustration of a hexahedron type module anddefinition of module posture vector entries We have also used module posture vector of the i-th module Pi to define possible combination lanes and directions. 70 Where, Pnn is the n-th connectivity direction on the m-th combinable plane. The combined configurations of any two modules can be represented by using vector 70 bilinear form of associate module posture vectors Pi and P. as follows. Where, Ai is the mutual connectivity coefficient matrix between the two modules. The entry af is the mutual connectivity coefficient that represents combinability between the n-th connectivity direction of the m-th combinable plane for the i-th module and the q-th combinable direction of the p-th combinable plane for the j-th module. The total number of configurations generated from N modules connection can be determined by multiplying the vector bilinear forms of Eq. ( 2) consecutively as in the following equation. Cryptographic mapping method The entry of a module posture vector is encoded into a binary digit string as shown in Fig. 3, likewise the term of bilinear form expansion of posture vectors also can be represented by the combinations of associated binary digit strings. Reversely the encoded binary string can be decoded by utilizing cryptographically mapped module library, which is library of similar modules. Machining function proving 71 It is possible to generate various machine tool configurations by cryptographic mapping, but not all of them are necessarily feasible for machining tasks. Therefore we need criteria to predict whether the generated machine configuration is feasible for 7l a desired machining task. Machine tools, in general, have three kind of motions; machining motion, feeding motion, and positioning motion. Among these, feeding and positioning motions can be fulfilled by adopting a sufficient number of feed-slides, for example at least three feed-slides are required for a 3-axes machine. However for the machining motion, the tool must be normal and directed to the working surface ( or machining surface) . Therefore we verified a machining function proving criteria for each configuration in this paper. 4. DESIGN AND DEVELOPMENT OF MICRO MACHINE TOOL Generation of configuration According to our design methodology, some feasible configurations of RMT are generated by using several structural modules and 4 functional modules for 3-axis micro milling machine and micro turning machine. After proving machining function and checking up geometric symmetry, the configurations in Fig. 4 was selected as the 7l final ones among all the feasible configurations. Development of micro machine tool 72 Fig. 5 shows the developed modules for RMT. The number of modules is l5 modules including l spindle module and 3 slide modules. These are used to compose all the RMT structures. According to the result of our design methodology, as mentioned above, the 3-axis vertical micro milling machine and the micro turning machine were built as shown in Fig. 6. Table l shows specification of the developed micro machine tools. 73 ap-m i lli ng mach ine (b) a -turn i ng mach i n e Fig. 6 Develop 创 RMT Table I The specification of DeveloQed R岛 1 Ts Specification Description Size milling 300x200 320 mm3 turnmg 300 200 133 mm Stage motor type 5P step motor Travel range IO 10 10 mm3 Resol ution 2 pm/pulse 74 Max. spe 时 20 mm/sec Spindle motor speed 5,000 60,000 rpm 75 5. FEA OF MICRO MACHINE TOOL We need to built RMT based the micro machine tool to have enough stiffness. To verify the static and dynamic characteristics of developed micro machine tool, we used FE method using ANSYS, commercial software. However, we considered just a 3-axis vertical micro milling machine in Fig. 6( a) among RTMs. The FE model of a 3-axis vertical micro milling machine is shown in Fig. 7. The material of structure is used aluminum alloy 7079. Although all the interfaces of the ad acent modules are actually fastened by bolts, we assumed that those are to be rigid for FEA. The 4 edge areas of the beds bottom are fixed as the boundary conditions. And the equivalent cutting force is 5 N to the iso-direction. Fig. 8 is shown the stress distribution and static displacement that consider the deflection by the structural weight. Each results are 0.45 pm and 0.26 MPa, respectively. The mode shapes and the natural frequencies are shown in Fig. 9. Because the maximum spindle motor speed is 60,000 rpm, we carried out the modal analysis within two times extents of motor speed that can cause resonance. The lt, 2nd 3rd, and 4th natural frequencies are 4l8, 528, l584, and l966 Hz respectively. The lst and 2nd 76 mode are the Ist bending modes in the X and Y directions. The 3rd mode is the Ist torsional mode. The 4th mode is the I st bending mode in the Z direction. And the static and dynamic compliances are calculated by FEM through the harmonic analysis. Those are 0.068 pim N and l.48 pim N respectively. 77 2. DYNAMIC TEST OF RMT Modal test We performed modal test on a 3-axis vertical micro milling machine to confirm the dynamic characteristic of structure. Fig. 4 represented modal test setup using impulse hammer. According to SISO ( Single Input & Single Output) method, an accelerometer 78 is attached to the fixed measuring point of spindle holder near the tool and we applied 79 impact force to exciting points around the micro milling machine with impulse hammer in measuring its acceleration. The output signal of the measured acceleration is conveyed to FFT analyzer. After obtaining frequency response function about each exciting point, the natural frequencies of the object is measured. Measured and theoretically analyzed natural frequencies are listed in Table 2 and corresponding measured mode shapes are presented through Fig. Ill. 80 It can be noted that the natural frequencies between experiment and FEA are similar, with having error less than l0%. 81 Dynamic compliance test 82 To measure the structural dynamic compliance, exciting force was applied to the spindle holder end through a impulse hammer and the resulting acceleration level was 78 measured on spindle holder. The dynamic compliance or the dynamic stiffness can be obtained from the measured force and acceleration signals. Table 3 represents the comparison of the calculated and measured structural compliance in the iso-direction. In Fig. l2, structural compliance response functions also obtained from impulse hammer test and FEM analysis are compared in graphic. 6. CONCLUSIONS 79 In this study, we applied cryptographic mapping based MRMT design methodology to design and develop RMT for microfactory. According to our design methodology, several machine configurations are generated for RMT. The feasible configurations 80 are obtained by proving machining function and checking geometry symmetry. We design and make several modules in accordance with the selected final configuration. Furthermore, we evaluate the performance of the micro milling machine. Measured and calculated natural frequencies showed good agreement with each other and the maximum error between them was less that l0 %0. Moreover, the dynamic compliance in the same direction was measured as l.2l LLtm N , and computed as l.48 Lrtm N . Consequently, we have successfully designed and developed a reconfigurable micro machine tool with reconfigurable structures by our design methodology using cryptographic mapping method. And we have well carried out the performance evaluation of the 3-axis vertical micro milling machine by FE analysis and dynamic test. 80 ACKNOWLEDGEMENT This study is one of results obtained from the research project, ”Structural Design Optimization of Reconfigurable Micro Machine Tool for Micro Meso Scale Component Machining” supported financially by the Ministry Of Commerce, Industry and Energy through KIMM. The authors would like to thank for their support. 8l REFERENCES Ll Y. Koren, F. Jovane, T. Moriwaki, G. Pitschow, G. Ulsoy, H. Van Brussel, ”Reconfigurable manufacturing systems,” Annals of the CIRP, Vol.48, No.2, pp.527-540, l999. L2 R. G. Landers, B. K. Min, Y. Koren, ”Reconfigurable machine tool,” Annals of the CIRP, Vol.50, No.l, pp.269-274, 200l. L3 Y. Moon, S. Kota, ”Design of reconfigurable machine tool,” ASME Journal of Manufacturing Systems, Vol.l24, pp.480-483, 2002. L4 J. K. Park, N. K. Lee, S. J. Lee, D. W. Lee, J. Y. Song, ”Development of Microfactory Systems for the Next Generation- 3rd Year Report,” Proc. of the 3rd Intl Workshop on Microfactory Technology, pp.5-l2, 2007. L5 Y. H. Choi, S. H. Jang, H. M. Park, J. K. Park, ”Creating structural configurations of modular reconfigurable micro machine tools by using cryptographic mapping and function proving,” Proc. of the lst Intl Conf. On Micromanufacturing, pp.ll5-ll9, 2006. L6 Y. H. Choi, S. H. Jang, S. M. Kim, S. G. Kim, J. K. Park, ”Configuration design method of modular reconfigurable machine tools by using cryptographic mapping,” Proc. of Intl of Conf. of Machine Design and Tribology, pp.l-6, 2007. L7 H. Shinno, Y. Ito, ”Computer Aided Concept Design for Structural Configuration of Machine Tools: Variant Design Using Direct Graph,” Journal of Mechanisms, Transmissions, and Automation in Deisgn, Vol.l09, pp327-376, l987. L8 R. Katz, Y. M. Moon, ”Virtual Arch Type Reconfigurable Machine Tool Design: Principles and Methodology,” Report of ERC RMS, The University of Michigan, Ann Arbor, MI, pp.l-34, 2000. L9 M. Weck and K. Teipel, Handbook of Machine Tools, Wiley, New York, l984. Ll0 D. J. Ewins, Modal Testing: Theory, Practice and Application, Research Studies Press, London, pp.49-64. l986. Lll S. H. Jang, S. M. Kim, S. G. Kim, Y. H. Choi, and J. K. Park, ”Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Compliance using Genetic Algorithm,” Proc. of the 3rd IWMT, pp77-8l, 2007. Ll2 S. H. Jang, S. M. Kim, Y. H. Hwang, Y. H. Choi and J. K. Park, ”Dynamic Characteristic Analysis of a Micro Milling Machine by Using F.E.M. and Impulse Hammer Test,” Trans of KSMTE, pp.29-34, 2007. 8l 微工厂中可重构微型机床的发展状况 Sung-Hyun Jang, Yon-gMin Jung, Hyu-nYoung Hwang, Young-Hyu Choi2口 Jong-Kwon Park3 研究院校 ,韩国昌原市,昌原国立大学机械设计与制造学院 , (电话 : +82-55-267-1107; 电子邮箱 : nakanygchangwon.ac.kr) 2 ,韩国昌原市,昌原国立大学机械电子学院 , (电话 : +82-55-213-3623; 电子邮箱 : yhchoigchangwon.ac.kr) 3,韩国大田市,韩国机械与材料学院 , (电话 : +82-42-868-7116; 电子邮箱 : jkparkgkimm.re.kr) 摘要 : 最近,在一些地方尤其是日本,美国,韩国出现了一些关于微工厂的 有趣的研究 。 由于微工厂具有柔性制造系统以及可重构制造系统的优点 , 我们介 绍了微工厂中应用的微型机床模块化可重构机床结构的概念 。模 块化可重构机床 只需要直接地增加或者替换机床单元或者模块 ,就能够便捷地进行不同的机械加 工过程,例如,锐削,车削,钻孔以及研磨等。 在这项研究中 , 我们为微工厂设计了可重构的微机床 , 它可以从一台锐床重 构为调车床 , 反之亦然 。 在机床中的结构设计中 , 我们己经在初级的设计阶段探 究了构建模块化可重构机床的理论方法 。 根据我们的设计方法 , 在设计的初级阶 段重新审视了所有的可行构造后 , 我们设计了结构模块以及可重构机床 。 利用某 些模块 , 我们一微锐床为基础构建了具有足够强度的可重构机床 。 这个可重构机 床 的 3 轴 微 锐 床 具 有 300mm200mm320mm 的 这 你 加 工 平 台 以 及 l0mml0mml0mm 的运行范围。 我们利用 F.E.M 以及冲击锤试验检验了我们设计的 MRMT 的动态特性,包 括圄有频率以及动态刚性 。 我们还利用运动控制器进行了位置控制试验以及切削 试验。 因此 , 我们利用微工厂中的锐床以及车床的可重构结构 , 应用结构模拟 ,结 构8l 以及模块设计, FE 分析,以及动态特性试验 (例如模型试验以及动态一致性 测试)的方法,成功研制了可重构微机床。 关 键 词 : 微工厂 , 可 重构微机 床 (RMMT), 结构模块 , 机床结构 , 加密映 8l 射,加工功能证明 1. 简介 在过去的几十年了 , 人们进行了很多的努力来改进一种技术 , 使之应用于制 造系统 , 加工过程和一种先进机床的研发上 。 最近人们对加工系统提出了更多不 同的要求,例如,小批量生产,柔性制造,减少成本以及功能组成。加工制造的 精度己经不只是到达微纳米尺度 , 而且机床也在 逐 渐 到达了 毫 米的尺度 。 根据关 于 CIM, FMS,RMS( 可重构加工系统 ) 的一些研究 , 多任务机床的研究也到了推进。 此外, 由 于 “ 订单生 产 ” 的利益增长 , 人们 提 出 了 “ 微工厂 ” 的概 念 。 最近以来, 微工厂以及微制造系统的研究得到了显著的增加。从 l990 年代日本的最初的关 于微工厂的研究以来 , 在 欧 洲 , 美国 , 韩国人们进行了大量不同的关于微制造系 统的研究并得到了很大的发展。 Ll-3 微工厂所带来的长处是 鉴 于其规模减小以及小型化所带来的利润 。 微工厂的 一个关键元素是微纳米尺度的机加工机床 。 在过去的 3 年里 , 韩国研制了一些微 纳米机机床,例如, 3 轴 立式微型锐床,微型车床,微型电火花机床,微型冲压 装配机床来构建微工厂系统。 L4 如上所述,由于微工厂具有了柔性制造系统以 及可重构加工系统 的优点 ,我们在我们微工厂中的可重构微机床设计中引入了模 块化可重构机床结构的概念 。 L 5-6 模块化可 重 构机床可以轻 易 地实现不同种类的 加工工 艺 ,例如锐削,车削,钻削,磨削,只需要增加或改换一些机床单元或者 模块 p 可。 尽管人们对于模块化可重构机床的认识己经很充分了 , 但是 , 却 很 少 有对模 8l 块化可重构机床构造方法的理论认识。 L7-8 我们在初级的设计阶段研究了创建 MRMT 结构的方法进行了理论研究。 L5-6 我们的设计过程包括两个步 骤 :第一 步是应用机床结构生成 , 利用加密映射 , 第二步是加工能力测试步 骤 。 L 5-6 我们 在初步的设计过程中得到了最终的可行的 MRMT 的结构。并且我们在分析了所 有可行的结构后我们精确地设计了结构模块以及 RMT。我们的 RMT 模型具有超 过 l0 中结构模块以及 4 中功能模块,应用于垂直 3 轴微锐床以及微车床。 我们接下来应用 F.E.M 以及冲击锤试验检验了设计的 MRMT 的动态特性, 包括圄有频率以及动态刚度。最后,我们评估了我们 RMT 的原型的性能。 8l 2 MRMT 的设计方法 2.1 联接的数学表示 图 l 微型 t 床 结构构建方法 这种方式提供了创建 MRMT 结构结构的的理论方法。我们设计的两个主要 方法是利用加密映射和加工功能证明。图 l 为此方法的示意图。 首先,模块的信息储存在模块库中。通过应用加密映射过程来产生机床的 结构 , 每个单位模块的 姿 态 矢 量被编制成二进制代 码 , 然后将所有的结构模块及 相关的代 码 存储在模块库 ( 图形文件 ) 中。 姿 态 矢 量是一个 矢 量,它的特征表示了 每个单元模块的结合平面的结合方向 。 其次 , 机床的结构通过利用任意两个相 邻 的 姿 态 矢

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论