计算指标权重的方法PPT课件.ppt_第1页
计算指标权重的方法PPT课件.ppt_第2页
计算指标权重的方法PPT课件.ppt_第3页
计算指标权重的方法PPT课件.ppt_第4页
计算指标权重的方法PPT课件.ppt_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

在统计学中用来确定权重的三种方法,三种方法:AHP、ANP、熵值法,1,.,三种方法:AHP、ANP、熵值法,其中,AHP、ANP既是一种评价方法,但更常用来计算指标权重。而熵值法则是一种根据指标反映信息可靠程度来确定权重的方法。,2,.,一、AHP,层次分析法(AHP)是美国著名的运筹学家Satty等人在20世纪70年代提出的将一种定性和定量分析相结合的多准则决策方法。这一方法的特点是在对复杂决策问题的本质、影响因素以及内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多目标、多准则或无结构特性的复杂决策问题,提供一种简便的决策方法。具体的说,它是指将决策问题的有关元素分解成目标、准则、方案等层次,用一种标度对人的主观判断进行客观量化,在此基础上进行定性和定量分析的一种决策方法。他把人的思维过程层次化、数量化,并用数学为分析、决策、预报或控制提供定量的依据。它尤其适合于人的定性判断起主要作用的、对决策结果难于直接准确计量的场合。,3,.,应用层次分析法时,首先要把问题层次化。根据问题的性质和要达到的目标,将问题分解为不同组成因素,并按照因素间的相互关联影响及其隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型。并最终把系统分析归结为最底层,相对于最高层目标的相对重要性权值的确定或相对优劣次序的排序问题。在排序计算中,每一层次的因素相对上一层次某一因素的单排序问题又可简化为一系列成对因素的判断比较。为了将比较判断定量化,层次分析法引入了1-9标度法,并写成判断矩阵形式。形成判断矩阵后,即可通过计算判断矩阵的最大特征值及其对应的特征向量,计算出某一层对于上一层次某一个元素的相对重要性权值。,4,.,在计算出某一层次相对于上一层次各个因素的单排序权值后,用上一层次因素本身的权值加权综合,即可计算出层次总排序权值。总之,依次由上向下即可计算出最低层因素相对于最高层的相对重要性权值或相对优劣次序的排序值。,5,.,AHP的模型与步骤,假设某一企业经过发展,有一笔利润资金,要企业高层领导决定如何使用。企业领导经过实际调查和员工建议,现有如下方案可供选择:(1)作为奖金发给员工;(2)扩建员工宿舍、食堂等福利设施;(3)办员工进修班;(4)修建图书馆、俱乐部等;(5)引进新技术设备进行企业技术改造。从调动员工工作积极性、提高员工文化技术水平和改善员工的物质文化生活状况来看,这些方案都有其合理因素。如何使得这笔资金更合理的使用,就是企业领导所面临需要分析的问题。,6,.,(1)构造层次分析结构,每一层次中的元素一般不超过9个,因同一层次中包含数目过多的元素会给两两比较判断带来困难。,7,.,(2)构造判断矩阵,判断矩阵的一般形式性质:(1)Cij0;(2)Cij=1/Cji;(3)Cii=1此时,矩阵为正反矩阵。若对于任意i、j、k,均有Cij*Cjk=Cik,则C为一致矩阵。,8,.,1-9标度方法,1/9,i元素比j元素极端不重要,9,1/7,i元素比j元素强烈不重要,8,1/5,i元素比j元素明显不重要,7,1/3,i元素比j元素稍不重要,6,9,i元素比j元素极端重要,5,7,i元素比j元素强烈重要,4,5,i元素比j元素明显重要,3,3,i元素比j元素稍重要,2,1,i,j两元素同等重要,1,Cij赋值,重要性等级,序号,注:2,4,6,8和1/2,1/4,1/6,1/8介于其间。,9,.,对于上述例子,假定企业领导对于资金使用这个问题的态度是:首先是提高企业技术水平,其次是改善员工物质生活,最后是调动员工的工作积极性。则准则层对于目标层的判断矩阵A-B为:,10,.,同样,可得:,11,.,(3)判断矩阵的一致性检验,判断矩阵的一致性,是指专家在判断指标重要性时,各判断之间协调一致,不致出现相互矛盾的结果。出现不一致在多阶判断的条件下,极容易发生,只不过是不同的条件下不一致的程度上有所差别而已。根据矩阵理论可知,如果满足:则为A的特征值,并且对于所有aii=1,有,12,.,显然,当矩阵具有完全一致性时,其余特征根均为0;而当矩阵A不具有完全一致性时,则有,其余特征根2,3,n有如下关系:,13,.,上述结论告诉我们,当判断矩阵不能保证具有完全一致性时,相应判断矩阵的特征根也将发生变化,这样就可以用判断矩阵特征根的变化来检验判断的一致性程度。因此,在层次分析法中引入判断矩阵最大特征根以外的其余特征根的负平均值,作为度量判断矩阵偏离一致性的指标,即用:检查决策者思维的一致性。CI值越大,表明判断矩阵偏离完全一致性的程度越大;CI值越小(接近于0),表明判断矩阵的一致性越好。,14,.,当判断矩阵具有完全一致性时,CI=0;当判断矩阵具有满意一致性时,需引入判断矩阵的平均随机一致性指标RI值。对于1-9阶判断矩阵,RI值如下:当阶数大于2时,判断矩阵的一致性指标CI与同阶平均随机一致性指标RI之比称为随机一致性比率CR,当CR=CI/RI0.10时,可以认为判断矩阵具有满意的一致性,否则需要调整判断矩阵。,15,.,(4)层次单排序,理论上讲,层次单排序计算问题可归结为计算判断矩阵的最大特征根及其特征向量的问题。但一般来说,计算判断矩阵的最大特征根及其对应的特征向量,并不需要追求较高的精确度,因为判断矩阵本身有相当的误差范围。而且,应用层次分析法给出的层次中各种因素优先排序权值从本质上来说是表达某种定性的概念。因此,一般用迭代法在计算机上求得近似的最大特征值及其对应的特征向量。在此给出计算矩阵最大特征根及其对应特征向量的方根法的计算步骤:,16,.,计算判断矩阵每一行元素的乘积Mi计算Mi的n次方根对向量正规化(归一化处理),17,.,则即为所求的特征向量。计算判断矩阵的最大特征根其中,(AW)i表示向量AW的第i个元素。,18,.,对于判断矩阵A,其计算结果为:对于判断矩阵B1,其计算结果为:,19,.,对于判断矩阵B2,其计算结果为:对于判断矩阵B3,其计算结果为:,20,.,(5)层次总排序,21,.,(6)决策,企业领导根据上述分析结果,决定各种考虑方案的实施先后次序,或者决定分配企业留成利润的比例。,22,.,算例,有5个指标:X1对X2明显重要;X1对X3强烈重要;X1对X4同等重要;X1对X5稍不重要。采用AHP方法计算指标权重。列出判断矩阵,23,.,一致性检验求最大特征根:在此采用MATLAB软件求取A=1,5,7,1,1/3;1/5,1,2,1/5,1/8;1/7,1/2,1,1/7,1/9;1,5,7,1,1/3;3,8,9,3,1B,D=eig(A)则:B=0.3697-0.0645+0.2358i-0.0645-0.2358i-0.2806-0.70710.0906-0.0633-0.0182i-0.0633+0.0182i0.2303-0.00000.0595-0.0063-0.0620i-0.0063+0.0620i-0.1231-0.00000.3697-0.0645+0.2358i-0.0645-0.2358i-0.28060.70710.84550.93390.93390.87990.0000D=5.114100000-0.0177+0.7618i00000-0.0177-0.7618i00000-0.078600000-0.0000,24,.,max=5.1141CI=(max-n)/(n-1)=(5.1141-5)/(5-1)=0.1141/4=0.0285RI(5)=1.12CR=CI/RI=0.0285/1.12=0.02550.10因此,通过一致性检验。求得权重权重即为最大特征根对应的特征向量W=0.3697,0.0906,0.0595,0.3697,0.8455进行归一化后的结果,w=W./sum(W)=0.2131,0.0522,0.0343,0.2131,0.4873,25,.,二、ANP(网络分析法),AHP是基于以下几个假设进行决策的,而这几个假设与某些实际决策问题有背离:(1)将决策系统分为若干层次,上层元素对下层元素起支配作用,同一层元素之间是相互独立的,但实际上,一般各层内部的元素之间都存在依存关系,同时下层对上层也有反支配(反馈)的作用;(2)决策问题可分为多个层次,上层元素对下层元素起控制,同一层次的元素间相互独立,不存在内部的相互依赖性。而实际决策问题中某些指标往往存在相互影响;(3)各个层次间只是存在相邻两个层次间自上向下的影响作用,没有考虑下层对上层的反作用。非相邻层次间的相互影响也没有考虑。而在实际决策中下层元素对上层元素有反作用(反馈)。ANP则取消了这些假定,在理论上允许决策者考虑复杂动态系统中各要素的相互作用,从而更符合决策问题的实际情况。,26,.,ANP基本结构,27,.,ANP的超矩阵算法,设网络ANP中控制层的元素为P1,P2,Ps,Pm,网络层有元素组为C1,C2,Ci,Cj,CN。其中Ci有元素ei1,ei2,eini。构造超矩阵如下,其中行表示汇,列表示源。针对网络结构中的相互作用和反馈信息,基于源对汇中的元素进行两两比较,求解源对于汇的相对偏好和重要性。,28,.,29,.,超矩阵W的每一元素Wij都是基于一个两两判断比较矩阵获得的归一化特征向量,列和为1,但是,W不是归一化矩阵,为此,以控制元素ps为准则,对控制元素ps下的各元素组对各元素组Cj的重要性进行比较,得到一个归一化的排序向量:,30,.,把矩阵A与W相乘得到加权超矩阵:在网络分析法ANP中,为了反映元素之间的依存关系,加权超矩阵W需要做一个稳定处理,即计算极限相对排序向量:如果极限收敛且唯一,则W的第j列就是控制元素下网络层各元素对于元素j的极限相对排序。,31,.,ANP的决策步骤,1.基于网络模型中各要素间的相互作用,进行两两比较;2.确定未加权超矩阵(基于两两判断矩阵,使用特征向量法获得归一化特征向量值,填入超矩阵列向量);3.确定超矩阵中各元素组的权重(保证各列归一);4.计算加权超矩阵;5.计算极限超矩阵;(使用幂法,即求超矩阵的n次方,直到矩阵各列向量保持不变)。,32,.,案例,33,.,34,.,35,.,36,.,再考虑成本、维修和耐用性之间的相互影响,得到三者的权重矩阵如下:,37,.,得到初始超矩阵,38,.,假定A=0.5,1;0.5,0,则加权超矩阵:,39,.,将加权超矩阵稳定处理,即自乘4-6次,得到稳定的极限超矩阵。(注意,每一步自乘之前需要将列向量归一化,否则加权超矩阵会越变越小,不会收敛),ANP决策结果表明:美国车是最优选择,成本是决定性因素。,40,.,软件:Superdecision,41,.,图元素组权重矩阵,42,.,权重矩阵,43,.,三、熵值法,熵的概念源于热力学,是对系统状态不确定性的一种度量。在信息论中,信息是系统有序程度的一种度量。而熵是系统无序程度的一种度量,两者绝对值相等,但符号相反。根据此性质,可以利用评价中各方案的固有信息,通过熵值法得到各个指标的信息熵,信息熵越小,信息的无序度越低,其信息的效用值越大,指标的权重越大。,44,.,熵是不确定性的度量,如果用Pj表示的j个信息不确定度(也即出现的概率)则整个信息(设有n个)的不确定度量也可用下式表示:这就是熵。其中K为正常数,当各个信息发生的概率相等时,即Pj=1/n,S取值最大,此时熵最大。,思考:为什么熵的公式是这样的?其内涵是什么?,其实,这就是一个规划问题,目标函数为min=sum(Pj*ln(Pj);约束条件为sum(Pj)=1;而最优解为P1=P2=Pn=1/n,45,.,可利用熵信息的概念确定权重,假设多属性决策矩阵如下:则用表示第j个属性下第i个方案Ai的贡献度。,46,.,可以用Ej来表示所有方案对属性Xj的贡献总量:其中,常数K=1/ln(m),这样,就能保证0=Ej=1,即Ej最大为1。由式中可以看出,当某个属性下各方案的贡献度趋于一致时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论