



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪教版七年级数学下册因式分解试题 : 常用的因式分解公式:1,赢在暑假(专项训练)1,配方法练习 v 步骤:1提:提出二次项系数; 2配:配成完全平方; 3化:化成平方差; 4分解:运用平方差分解因式。v 实质:对二次三项式的常数项进行 “添项”。“添”的是一次项系数一半的平方。2,十字相乘法练习Xaxb型式子的xx21乘积为x乘积为常数项交叉相乘的和为一次项 x5x6 x3x2 x7x6 x3x2 xx2 x2x15 x5x6 这就是说,对于二次三项式,如果能够把常数项分解成两个因数a、b的积,并且a+b等于一次项的系数p,那么它就可以分解因式,即。可以用交叉线来表示:3一因式分解提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x x -2x -x=x(x -2x-1) 。4,应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b 解:a +4ab+4b =(a+2b)5分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 6换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x 2(x + )-(x+ )-6 令y=x+ , x 2(x + )-(x+ )-6 = x 2(y -2)-y-6 = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 7、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 1,分解因式x2-2xy-35y2= 22x2-7x-15= 3.20x2-43xy+14y2=418x2-19x+5= 56x2-13x+6= 65x2+4xy-28y2=7-35m2n2+11mn+6= 86+11a-35a2= 96-11a-35a2= 4n2+4n-15; (2)6a2+a-35; (3)5x2-8x-13;(4)4x2+15x+9; (5)15x2+x-2; (6)6y2+19y+10;把x2+(p+q)x+pq型二次三项式分解因式时,如果常数项是正数,那么把它分解成两个因数的符号有什么关系?如果常数项是负数,情形又如何?填出以下规律1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加工竖立桅杆合同样本
- 农村拆除合同样本
- 买卖旧木材合同样本
- 农民种菜养殖合同标准文本
- 农村赡养合同标准文本
- 个人担保合同样本6
- 保洁设备采购合同标准文本
- 加工企业合同标准文本
- 五金零件模具合同样本
- 制冷报价合同样本
- 2025-2030中国内联pH传感器行业市场发展趋势与前景展望战略研究报告
- 创伤现场急救课件
- 2025荆州学院辅导员考试题库
- 2025年云南德宏州宏康投资开发有限公司招聘笔试参考题库含答案解析
- 静配中心与临床科室沟通
- 《2B-3型谷物播种机的结构设计》12000字
- 教学设计:铸牢民族共同体意识
- 交通设计(Traffic Design)知到智慧树章节测试课后答案2024年秋同济大学
- 2024年毕节市金沙县全县考调机关单位事业单位人员考试真题
- 水利系统职称考试水利专业技术人员职称考试题(附答案)
- 初级社工师《社会工作实务》考试(重点)题库300题(含答案解析)
评论
0/150
提交评论