已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
对数函数及其性质的应用,y=logax(a0,a1),y=ax(a0,a1),a1时,在R上是增函数;0a1时,在(0,+)是增函数;0a1),y=ax(0a1),y=logax(01dc,y=log4x,y=log3x,题型1:对数型复合函数的单调性,例6:(1)分析函数的单调性.(2)分析函数的单调性,易错点:忽视函数的定义域!,练习:,互动探究本例中若将函数改为“yloga(x1)(x1)(a0且a1)”,又如何求在(,1)(1,)上的单调区间?解:此函数是由ylogau,u(x1)(x1)x21复合而成,而ux21在(,1)上单调递减,在(1,)上单调递增当a1时,ylogau在(0,)上单调递增,根据复合函数的单调性知:yloga(x1)(x1)在(,1)上单调递减,在(1,)上单调递增当0a1时,ylogau在(0,)上单调递减,根据复合函数的单调性知:yloga(x1)(x1)在(,1)上单调递增,在(1,)上单调递减,学点五求单调区间,求下列函数的单调区间:(1)f(x)=;(2)f(x)=log0.1(2x2-5x-3).,【分析】复合函数的单调性,宜分解为两个基本函数后解决.,返回目录,【解析】(1)令t=-2x2+x+6=-2+.由-2x2+x+60知-0,得x3.易知y=log0.1是减函数,=2x2-5x-3在上为减函数,即x越大,越小,y=log0.1u越大;在(3,+)上函数为增函数,即x越大,越大,y=log0.1越小.原函数的单调增区间为,单调减区间为(3,+).,返回目录,返回目录,2求值域,求下列函数的值域:(1)(2),【分析】复合函数的值域问题,要先求函数的定义域,再由单调性求解.,返回目录,【解析】(1)-x2-4x+12=-(x2+4x)+12=-(x+2)2+1616,又-x2-4x+120,00,且y=logx在(0,+)上是减函数,yR,函数的值域为实数集R.,返回目录,求值域:(1)y=log2(x2-4x+6);(2).,(1)x2-4x+6=(x-2)2+22,又y=log2x在(0,+)上是增函数,log2(x2-4x+6)log22=1.函数的值域是1,+).(2)-x2+2x+2=-(x-1)2+33,0,且a1).(1)求f(x)的定义域;(2)讨论函数f(x)的单调性.,返回目录,探究:已知f(x)=2+log3x,x1,9,求y=f(x)2+f(x2)的最大值及当y取最大值时x的值.,【分析】要求函数y=f(x)2+f(x2)的最大值,首先要求函数的解析式,然后求出函数的定义域,最后用换元法求出函数的值域.,【解析】f(x)=2+log3x,y=f(x)2+f(x2)=(2+log3x)2+(2+log3x2)=log32x+6log3x+6=(log3x+3)2-3.函数f(x)的定义域为1,9,要使函数y=f(x)2+f(x2)有定义,必须,1x291x9.1x3,0log3x1.令u=log3x,则0u1.又函数y=(u+3)2-3在-3,+)上是增函数,当u=1时,函数y=(u+3)2-3有最大值13.即当log3x=1,即x=3时,函数y=f(x)2+f(x2)有最大值为13.,【评析】求函数的值域和最值,必须考虑函数的定义域,同时应注意求值域或最值的常用方法.,返回目录,返回目录,1.如何确定对数函数的单调区间?,(1)图象法:此类方法的关键是图象变换.(2)形如y=logaf(x)的函数的单调区间的确定方法:首先求满足f(x)0的x的范围,即求函数的定义域.假设f(x)在定义域的子区间I1上单调递增,在子区间I2上单调递减,则当a1时,原函数与内层函数f(x)的单调区间相同,即在I1上单调递增,在I2上单调递减.当0a1时,原函数与内层函数f(x)的单调区间不同,原函数在I1上单调递减,在I2上单调递增.,2.如何学好对数函数?,对数函数与指数函数的学习要对比着进行,如它们的定义域和值域互换,它们的单调性与底数a的关系完全一致,指数函数和对数函数的图象分别过点(0,1)和点(1,0)等,这样有助于理解和把握这两个函数.,3.如何理解反函数?,学习过程中要注意指数函数与对数函数的关系和它们间的相互转化,掌握反函数的图象关于直线y=x对称,在解决有关指数函数和对数函数的问题时,要注意数形结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届河北省永清一中高三1月统一考试数学试题
- 草原征占合同模版
- 菜棚转让合同
- 别墅地下室租赁合同
- 北京市机关食堂餐饮服务合同
- 内蒙古自治区赤峰市2024-2025学年七年级上学期11月期中数学试题(含答案)
- HF-FB防弹玻璃相关行业投资规划报告
- 铜基钎料相关行业投资规划报告
- 肝肺综合症课件
- 普外科肺栓塞情景演练
- 渔业船舶检验管理规定
- 第九章2节共价键理论
- 售后服务及技术服务方案
- 《商业模式设计》课程教学大纲
- JJG 875-2019数字压力计检定规程(高清版)
- 零售运营中的150个英文缩写
- 二年级上册书法教案
- 【3-5分钟微电影剧本青春】微电影剧本《青春不褪色》
- 第八章气隙磁导的计算经典实用
- (最新整理)液化气体汽车罐车安全监察规程
- 棋王:传统文化的审美符号 ——王一生形象探析毕业论文
评论
0/150
提交评论