大学物理物理学课件机械能守恒定律.ppt_第1页
大学物理物理学课件机械能守恒定律.ppt_第2页
大学物理物理学课件机械能守恒定律.ppt_第3页
大学物理物理学课件机械能守恒定律.ppt_第4页
大学物理物理学课件机械能守恒定律.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,大学物理,2,第二章机械能守恒定律,2-1功和功率2-2动能和动能定理2-3势能2-4机械能守恒定律,3,2-1功和功率,从a点运动到b点,力对质点所作的总功就是各元功之和:,一.功:单位J(焦耳,焦)定义:作用于质点的力与质点沿力的方向所作位移的乘积。,4,合力所作的功,即:合力对某质点所作的功,等于在同一过程中各分力所作功的代数和。,在直角坐标系中有,即:合力所作的功等于其直角分量所作功的代数和。,5,二、功率单位时间内所作的功称功率,用P表示,单位,W(瓦特,瓦).,6,例2-1设作用在质量为2kg的物体上的力F=6t(N)。如果物体由静止出发沿直线运动,问在头2s时间内,这个力对物体所作的功。,解:按功的定义式计算功,必须首先求出力和位移的关系式。根据牛顿第二定律F=ma可知物体的加速度为a=F/m=6t/2=3t所以dv=adt=3tdt,力所作的功为,7,例2-2一个质点沿如图所示的路径运行,求力F=(4-2y)i(SI)对该质点所作的功,(1)沿ODC;(2)沿OBC。,解:,(1)OD段:y=0,dy=0,DC段:x=2,Fy=0,dx=0,(2)OB段:Fy=0,dx=0,BC段:y=2,dy=0,结论:力作功与路径有关,即力沿不同的路径所作的功是不同的,8,2-2动能和动能定理,1.动能,即:质点的动能定义为质点的质量与其速率平方的乘积的一半,用Ek表示。,定义:,9,2.质点动能定理,式叫做质点动能定理。它说明:作用于质点的合外力所作的功,等于质点动能的增量。(1)功是标量,且有正负。(2)A为过程量,Ek为状态量,过程量用状态量之差来表示,简化了计算过程。动能定理成立的条件是惯性系。功是能量变化的量度。,10,例题2-3今有一倔强系数为k的轻弹簧,竖直放置,下端连接一质量为m的物体,开始时使弹簧为原长而物体m恰好与地面接触。今将弹簧上端缓慢地提起,直到物体m刚能脱离地面时止,求此过程中外力作的功。,解将弹簧上端缓慢地提起的过程中,需要用多大的外力?,外力:F=kx,这是一个变力。建立如图所示的坐标。,物体m脱离地面的条件是什么?kx0=mgx0=mg/k所以外力作的功为,11,解如何求出合外力及分力呢?,Fx=-m2x,Fy=-m2y,其中:x=acost,y=bsint当t=0时,x=a,y=0;当t=/(2)时,x=0,y=b。合外力的功为,合外力:,12,分力Fx、Fy的功为,(1)显然合外力的功等于分力的功之和:,(2)合外力的功也可由动能定理直接求出。,13,由动能定理得合外力的功为,这样作的优点是:不必求出力,就能求出这个力的功,且更简便。,14,例题2-5在光滑的水平桌面上,平放着如图所示的固定的半圆形屏障。质量为m的滑块以初速度0沿切线方向进入屏障内,滑块和屏障间的摩擦系数为。求滑块滑过屏障的过程中,摩擦力的功。,解滑块在水平面内受两个力的作用:摩擦力fr、屏障给它的支持力N,如图所示。在自然坐标系中,,法向:(1),切向:(2),将式(1)代入式(2),有,15,将上式化简后得:d=-d对上式分离变量并积分:,由于支持力N不作功,由动能定理得摩擦力的功为,16,2-3势能,一、势能的概念,由物体(质点)间的相互作用和相对位置决定的能量称为势能。常见的势能形式有引力势能、重力势能和弹力势能。,动能可以属于某个物体所有,也可以属于某个系统共有,但势能却只能属于相互作用着的物体构成的系统共有。,能量包括动能和势能。动能是物体以自身的运动速率所决定的作功的本领。,二、万有引力、重力、弹性力作功的特点,17,如图所示,质量为m的质点在质量为M的质点的引力场中,由a点沿任意路径运动到b点(用ra和rb分别表示a、b两点到质点M的距离)。注意到:dscos(-)=dr(即质点m与M之间距离r的增量),所以引力对质点m所作的功为,上式中的G是引力常数。由式可见,万有引力的功也只与质点始末位置有关,而与质点所经过的实际路径形状无关。,万有引力的功,18,设质量为m的质点沿一曲线L从a点运动到b点(高度分别为ha和hb),如图所示;重力对质点m作的功为,假如质点m从a点沿另一曲线C运动b点,显然所作的功仍如式所示。由此可见,重力作功只与质点的始末位置有关,而与质点所经过的实际路径形状无关。,重力的功,19,将轻弹簧的一端固定,另一端连接一小球,如图所示。当小球由a点运动到b点过程中,弹性力所作的功为,由式可知,弹性力作功和重力作功一样,只与运动质点的始末位置有关,而与其经过的实际路径形状无关。式中k为弹簧的倔强系数。,弹性力的功,20,三、保守力,保守力:作功只与初始和终了位置有关而与路径无关这一特点的力万有引力、重力、弹性力非保守力:作功与路径有关的力摩擦力,保守力作功与路径无关和保守力沿任意路径一周所的功为零保守力的判据,21,四、势能,可见,保守力的功可写为,定义:Epa是系统在位置a的势能;Epb是系统在位置b的势能。,22,上式的意义是:保守力的功等于势能增量的负值。若取b点为零势点,则由式我们得到系统在位置a的势能为,上式表示,系统在位置a的势能等于系统从该位置移到势能零点时保守力所作的功。这就是计算势能的方法。原则上讲,势能的零点是可以任意选择的,因此势能仅具有相对的意义。,23,(1)通常选取两物体相距无穷远时(此时引力为零)的势能为零。,(3)引力势能总是负值。应当注意:势能是属于相互作用着的物体所组成的系统的,不应把它看作是属于某一个物体的。,引力势能,(2)两物体M、m相距r时的引力势能,24,(1)零势面可任意选择,由问题的方便而定。(2)重力势能为Ep=mgh(3)物体在零势面以上,重力势能为正,否则为负。弹力势能,(3)弹性势能总是正值。,重力势能,(1)通常规定弹簧无形变(即未伸长也未压缩)时的势能为零。(2)弹簧伸长或压缩x时的弹性势能,25,五*、势能曲线,势能曲线不仅给出势能在空间的分布,而且还可以表示系统的稳定状态。曲线斜率为保守力的大小。从势能曲线可分析系统的平衡条件及能量的转化。,26,设系统由n个质点组成,对mi应用动能定理,有,2-4机械能守恒定律,这就是质点系动能定理:外力和内力对系统所作功的代数和,等于系统内所有质点的总动能的增量。,式中:i=1,2,3,。对上式求和得,1.质点系动能定理,27,将上述结果代入动能定理:A内+A外=Ek-Ek0移项后,则得A外+A非保守内力=(Ep+Ek)-(Ep0+Ek0)式中:E=Ek+Ep是系统的机械能。上式表明:系统合外力的功和非保守内力的功的代数和等于系统机械能的增量。这一结论称为系统的功能原理。这里需要指出的是,系统机械能的改变不仅与外力的功有关,而且还与非保守内力的功有关。,2.功能原理,内力的功A内也可以写成A内=A保守内力+A非保守内力,28,A外+A非保守内力=(Ep+Ek)-(Ep0+Ek0)如果合外力的功与非保守内力的功之和为零(即A外+A非保守内力=0)时,则Ep+Ek=恒量这一结论称为机械能守恒定律。,3.机械能守恒定律,29,例题2-6如图所示,一链条总长为L、质量为m,放在桌面上,一端下垂,下垂一端的长度为a,链条与桌面之间的滑动摩擦系数为,令链条由静止开始运动,求链条末端离开桌面时的速率。,解链条受三个力作用:摩擦力、重力(保守力)以及桌面对它的支持力(此力不作功)。此题宜用功能原理求解。建立如图所示的坐标ox,先求摩擦力(变力)的功:,30,取桌面为零势面,由功能原理:,解得,A外+A非保守内力=(Ep+Ek)-(Ep0+Ek0),对链条、细棒这样一些有一定长度的物体,计算重力势能和重力的力矩时可将其质量集中在质心,从而当作一个质点处理。,31,例题2-7如图所示,光滑地面上有一辆质量为M的静止的小车,小车上一长为L的轻绳将小球m悬挂于o点。把绳拉直,将小球由静止释放,求小球运动到最低点时的速率。,解以小球为研究对象,它受两个力:绳的张力T,重力mg。因为小球绕o点作圆运动,张力T与运动方向垂直,因此它不作功,只有重力(保守力)作功,所以机械能守恒:,解得:,这个解法对吗?,32,说小球绕o点作圆运动,张力T不作功,因而机械能守恒,这是以小车为参考系作的结论。这里有两个错误:一是小车是非惯性系(有加速度),机械能守恒定律是不成立!二是机械能守恒条件中的功,应该在惯性系中计算。在惯性系(地面)上看,张力T要作功,机械能是不守恒的。,错!错在那里?,正确的解法是取小车、小球和地球为系统,一对内力(张力T)作功之和为零,只有保守内力重力作功,系统(M+m)机械能守恒。,33,(1),系统动量守恒吗?竖直方向的动量显然不守恒,只有在水平方向(根本不受外力)动量守恒0=MV-m(2)解式(1)、(2)得小球运动到最低点时的速率为,(M+m):,34,例题2-8半径为R、质量为M且表面光滑的半球,放在光滑的水平面上,在其正上方放置一质量为m的小物体,当小物体从顶端无初速地下滑,在如图所示的角位置处,开始脱离球面,试求:(1)角满足的关系式;(2)分别讨论m/M1时cos的取值。,解(1)小物体脱离球面前相对球面作圆运动,沿法向有,脱离球面的条件是:N=0。,(1),35,取地面为惯性系,以m、M和地球为系统,机械能守恒,于是有,取地面为惯性系,以m、M为系统,只有水平方向动量守恒:,(2),(3),应当注意:式(2)、(3)中的x、是m相对地面的速度。,36,由速度合成定理:,(4),(5),解上述式子得:,37,(2)当m/Mm时,cos=2/3这相当于M不动的情况。当m/M1,即mM时,有cos3-3cos+2=0分解因式得(cos-1)2(cos+2)=0cos=1,=0这表明,这时M一下子滑出,m竖直下落。,38,第一宇宙速度是要使航天器绕地球旋转而不掉落到地面的最低发射速度(7.91km/s),我们也之称为环绕速度。计算过程见:例15。第二宇宙速度是航天器如欲飞离地球而不再返回的最低的发射速度(11.19km/s);我们也之称为逃逸速度(脱离速度)。计算过程见:例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论