



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020版高二数学下学期期中试题 理(无答案) (I)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数f(x)=ax+4,若,则实数a的值为()A2B2C3D32.曲线yx32在点x=1处切线的斜率为( )A. -1 B. 1 C. -2 D. 23若命题“”为假,且“”为假,则( )A 且为真 B假 C 真 D假 4. 若抛物线上的点到焦点的距离为10,则到轴的距离为( )A8 B9 C10 D115下列有关命题的说法正确的是()A命题“若x2=1,则x=1”的否命题为:“若x2=1,则x1”B命题“xR,使x2+x+10”的否定为:“xR,使x2+x+10”C命题“若f(x)=x32x2+4x+2,则2是函数f(x)的极值点”为真命题D命题“若抛物线的方程为y=4x2,则焦点到其准线的距离为”的逆否命题为真命题6.函数f(x)=x33x+2的极大值点是()Ax=1Bx=1Cx=0Dx=17.直线l经过抛物线y2=4x的焦点,且与抛物线交于A,B两点,若AB的中点横坐标为3,则线段AB的长为()A5B6C7D88方程x2+xy=x的曲线是()A两条直线B一条直线C一个点D一个点和一条直线9、已知f(x)2x36x2m(m为常数)在2,2上有最大值3,那么此函数在2,2上的最小值是()A37B29 C5 D以上都不对10. 已知双曲线,过左焦点作垂直于轴的直线交双曲线于两点,双曲线的右顶点为,且,则双曲线的离心率为( )A. B. C. D. 11、设p:函数在单调递增,q: 则p是q的( )。A充要条件 B必要不充分条件C充分不必要条件 D既不充分也不必要条件12定义在R上的函数满足,(其中e为自然对数的底数),则不等式的解集为()A.B.C.D.2. 填空题(本大题共4小题,每题5分,满分20分)13.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是_14.已知椭圆=1(ab0)的左焦点F1(c,0),右焦点F2(c,0),若椭圆上存在一点P使|PF1|=2c,F1PF2=60,则该椭圆的离心率e为15设函数f(x)x(ex1)x2,则f(x)的增区间为_16若存在正实数x0使e(x0a)2(其中e是自然对数的底数,e=2.71828)成立,则实数a的取值范围是三.解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)17(本小题满分10分)设命题:函数在区间上单调递减;命题: 对R恒成立.如果命题或为真命题,且为假命题,求的取值范围 18.(本小题满分12分)设为实数,函数()求 的极值;() 当在什么范围内取值时,曲线与轴仅有一个交点19.(本小题满分12分)在抛物线y2=16x上任取一点P,过点P作x轴的垂线PD,垂足为D,当P在抛物线上运动时,线段PD的中点M的轨迹为曲线C(1)求曲线C的轨迹方程;(2)过点F(1,0)的直线l与曲线C交于A、B两点,其中,过点B作直线x=-1的垂线,垂足为B1,问是否存在实数,使,若存在,求实数的值;若不存在,请说明理由。20.(本小题满分12分)已知函数f(x)=x3+bx2+cx1当x=2时有极值,且在x=1处的切线的斜率为3(1)求函数f(x)的解析式;(2)求函数f(x)在区间1,2上的最大值与最小值21(本小题满分12分)给定椭圆:,称圆为椭圆的“伴随圆”,已知椭圆的短轴长为2,离心率为()求椭圆的方程;()若直线与椭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理肿瘤病人礼仪培训
- 江西省婺源县2024-2025学年初三学生调研考试数学试题含解析
- 江苏省永丰初级中学2024-2025学年七校联考高考物理试题一模试卷含解析
- 中国计量大学现代科技学院《中医药学概论》2023-2024学年第二学期期末试卷
- 丽水职业技术学院《音乐文献检索与论文写作》2023-2024学年第二学期期末试卷
- 渭南市澄城县2024-2025学年五年级数学第二学期期末教学质量检测模拟试题含答案
- 山西药科职业学院《医学细胞生物学讨论》2023-2024学年第一学期期末试卷
- 江苏省泰州市泰兴市黄桥教育联盟重点名校2025届初三下学期联考(二)语文试题试卷含解析
- 江苏大学京江学院《校园音乐活动策划》2023-2024学年第二学期期末试卷
- 内蒙古艺术学院《教你玩转信息化学习》2023-2024学年第二学期期末试卷
- 四川省成都市武侯区北京第二外国语学院成都附属中学2024-2025学年八年级上学期期中考试英语试题(含答案无听力原文及音频)
- 【MOOC】老子的人生智慧-东北大学 中国大学慕课MOOC答案
- 售后服务组织架构及人员岗位职责
- 智能交通监控系统运维服务方案(纯方案-)
- 废旧锂电池回收利用技术课件
- 区域医学检测中心的建设与管理V3
- 2024-2025学年北京西城区北京四中高二(上)期中物理试卷(含答案)
- 北京市矢量地图-可改颜色
- 技术转移案例
- 旅游公司抖音代运营合同范本
- 草莓水果课件教学课件
评论
0/150
提交评论