已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010届高考数学复习 强化双基系列课件,排列组合 二项式定理,一、内容归纳 1 知识精讲: (1)二项式定理:,特别地:,(2)二项展开式系数的性质:对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,,其中, 是二项式系数。而系数是字母前的常数。,即:,增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果二项式的幂指数是偶数,中间一项的二项式系数最大,即n偶数: 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,即。,所有二项式系数的和用赋值法可以证明等于 即 奇数项的二项式系数和与偶数项的二项式系数和相等,即,(3)二项式定理的应用:近似计算和估计、证不等式,如证明:,取,的展开式中的四项即可。,2重点难点: 二项式定理和二项展开式的性质。 3思维方式:一般与特殊的转化,赋值法的应用。 4特别注意: 二项式的展开式共有n+1项, 是第r+1项。,通项是 (r=0,1,2,n)中含有 五个元素,只要知道其中四个即可求第五个元素。,注意二项式系数与某一项系数的异同。 当n不是很大,|x|比较小时可以用展开式的前几项求 的近似值。,二、问题讨论,例1(1) 等于 ( ),A 、 B、 C、 D、,(2)若n为奇数,则 被9除得的余数是 ( ) A、0 B、2 C、7 D、 8,D,C,例2、(1)如果在 的展开式中,前三项的系数成等差数列,求展开式中的有理项。,(2)求 的展开式的常数项。,(3)在 的展开式中,求x的系数(即含x的项的系数),【思维点拨】 求展开式中某一特定的项的问题时,常用通项公式,用待定系数法确定r。,练习:(1)在,的展开式中,求,的系数。,(2)求 的展开式中的常数项。,(3)求 的展开式中 的系数。,14,1120,。,例3设an1qq2qn1(nN*,q1),,An,(1) 用q 和n 表示An (2)当 时,求,【思维点拨】:本题逆用了二项式定理及,例4、若 = , 求(1) 的值。 (2) 的值。,【思维点拨】 用赋值法时要注意展开式的形式。,0,备用题: 例5已知 , (1) 若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数。 (2) 若展开式前三项的二项式系数和等于79,求展开式中系数最大的项。,【思维点拨】二项式系数与展开式某一项系数是不同的概念。,例6:当 且n1,求证,【思维点拨】这类是二项式定理的应用问题,它的取舍根据题目而定。,三、课堂小结: 1、二项式定理及二项式系数的性质。通项公式。 2、要区分二项式系数与展开式项的系数的异同。 3、证明组合恒等式常用赋值法。,四、课 前 热 身,9,1. 已知 的展开式中,x3的系数为 ,则 常数a的值为_.,2. 在 的展开式中,常数项为_.,15,【解题回顾】在不影响结果的前提下,有时只要写出二项展开式的部分项,此可称为“局部运算法”.,B,3. 若 的展开式中含有x4的项,则n的 一个值是( ) (A)11 (B)10 (C)9 (D)8,B,4. 的展开式中系数大于-1的项共有( ) (A) 5项 (B) 4项 (C) 3项 (D) 2项,B,5. 在 的展开式中,常数项是 ( ) (A) 第11项 (B) 第7项 (C) 第6项 (D) 第5项,返回,. 已知(3-2x)5a0+a1x+a2x2+a3x3+a4x4+a5x5,则 (1)a2+a3+a4+a5的值为_; (2)|a1|+|a2|+|a3|+|a4|+|a5|=_.,568,2882,7. 2C02n+C12n+2C22n+C32n+2C2k2n+C2k+12n+C2n-12n +2C2n2n=_.,322n-1,8. 若 的展开式中只有第6项的系数最大,则 不含x的项为( ) (A) 462 (B) 252 (C) 210 (D) 10,C,9. 已知(2x+1)n(nN+)的展开式中各项的二项式系数之 和为Sn,各项的系数和为Tn,则 ( ) (A) -1 (B) 0 (C) 12 (D) 1,A,10. 1-90C110+902C210-903C310+(-1)k90kCk10+9010C1010 除以88的余数是( ) (A)-1 (B)1 (C)-87 (D)87,A,返回,五、能力思维方法,1. 若(x+m)2n+1和(mx+1)2n(nN+,mR且m0)的展开式的 xn 项的系数相等,求实数m的取值范围.,【解题回顾】注意区分二项式系数与项的系数.,2. 在二项式 的展开式中,前三项的 系数成等差数列,求展开式中的有理项.,【解题回顾】展开式中有理项的特点是字母x的 指数 即可,而不需要指数,3. 求 的展开式中,系数的绝对值最 大的项和系数最大的项.,【解题回顾】由于这个二项式的第二项分母中有数字2,所以展开式中的系数不是二项式系数,因此不能死背书上结论,以为中间项系数最大.,返回,求证 及 的展开式中不能同 时含有常数项.,【解题回顾】二项式定理解题活动中,涉及到的很多问题都是关于整数的讨论,要注意其中的字母取整数这一隐含条件的应用.,5. (1)求证:kCkn=nCk-1n-1; (2)等比数列an中,an0,试化简 A=lga1-C1nlga2+C2nlga3-+(-1)nCnnlgan+1.,【解题回顾】不仅要掌握二项式的展开式,而且要习惯二项展开式的逆用,即应用二项式定理来“压缩”一个复杂的和式,这一解题思想方法是很重要的.,返回,【解题回顾】解一、解二各有优点,在具体的问题中应视情况不同选用.,6. 求(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中x2的系数.,7.已知 展开式的各项系数之和比(1+2x)2n展 开式的二项式系数之和小240,求 展开式中 系数最大的项.,【解题回顾】在 展开式中,各项系数之和 就等于二项式系数之和;而在(1+2x)2n展开式中各项 系数之和不等于二项式系数之和,解题时要细心审 题,加以区分.,8.已知(3x-1)7a7x7+a6x6+a1x+a0, 求:(1)a1+a2+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6.,【解题回顾】本题采用的方法是“赋值法”,多项式f(x) 的各项系数和均为f(1),奇数项系数和为 偶数项的系数和为,9.填空题: (1)1.9975精确到0.001的近似值为_; (2)在(1+x+x2)(1-x)10的展开式中,x5的系数是_; (3)1919除以5的余数为_; (4)和SC110+2C210+3C310+10C1010的值为_.,-162,4,5120,31.761,【解题回顾】用二项式定理讨论一个式子被m除的余 数时,一般把其主要式子写成(a+bm)n(a、bZ)的形 式,即首项外其余各项均能被m整除.而对于不满足 C0n+C1n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程设计技术服务合同
- 2024年黑龙江客运资格证考试口诀图片
- 2024年江苏客运资格证摸拟考试题
- 2024年资阳客运从业资格证考试模拟
- 2024年宁德大客车从业资格证考试
- 2024年度KTV场所酒水库存管理合同
- 2024年建筑工人雇佣合同模板
- 别墅案例分析
- 副总经理招聘面试题与参考回答(某大型国企)2024年
- 软件资格考试信息系统管理工程师(中级)(基础知识、应用技术)合卷试题与参考答案
- 无肝素透析的护理课件-2
- 每日消防安全巡查记录表
- 起重作业吊装令
- 三角函数知识点复习总结填空
- 大学钢琴即兴伴奏教案
- 最新VTE指南解读(静脉血栓栓塞症的临床护理指南解读)
- 博鳌亚洲论坛海南年会PPT模板
- 新教材人教版高中化学选择性必修三全册教学课件
- 2023年银行业风险管理(中级)考试考试题库(真题整理)
- 监护仪培训-PPT课件
- 沟通技巧游戏
评论
0/150
提交评论