




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章 图形的平移与旋转3.3 生活中的旋转一、学习目标定位1通过对生活中与旋转现象有关的图形进行观察、分析,以及动手操作、画图等过程,掌握有关的画图技能。2通过具体实例认识旋转,理解旋转前后两个图形对应点到旋转中心距离相等,对应点与旋转中心的连线所成的角彼此相等的性质,发展初步的审美能力。二、重点难点解析 重点:对生活中的旋转现象作数学上的分析研究,旋转的定义,旋转的基本性质。难点:对旋转现象的分析研究,对旋转性质的探索。三、教学过程(一)巧设情景问题,引入课题日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景)。(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?1.在这些转动的现象中,它们都是绕着一个点转动的。2.每个物体的转动都是向同一个方向转动。3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化。同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.(二)讲授新课1在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。2由旋转的定义总结决定旋转的三要素:旋转中心,旋转方向,旋转角度。 对应练习:P80 随堂练习 1议一议:(课本67页)答:(1)旋转中心是O点,旋转角是AOD.旋转角还可以是BOE.(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以AOD与BOE是相等的.(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以AOB与DOE是相等的,又因为BOD是公共角,所以,AOD与BOE是相等的.看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.因为点A与点D、点B与点E是对应点,且AOD=BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.由此我们得到了3旋转角的定义:任意一对对应点与旋转中心的连线所成的角都是旋转角。4旋转的基本性质:经过旋转,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的旋转角相等. 5例题讲解:例1分析:经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360,一周需要60分,因此每分钟分针所转过的度数是6,这样20分时,分针逆转的角度即可求出。补充练习:12点整、7点整,时针与分针所成的角分别为几度?析:点整,时针经过,与分针的夹角是时,夹角为,时为,2点时,;7点时,23点12分,3点40分时,时针与分针所成角各为多大?析:点分时,两针所成的角为。其中,时针每小时转动,时针每分钟转动。(三)活动与探究1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.结果:旋转现象为:整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45、90、135、180、225、270、315前后的图形共同组成的.整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90、180、270前后的图形共同组成的.整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180前后的图形共同组成的.2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90、180、 270.前后的图形共同组成的.整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180前后的图形共同组成的。四、归纳小结图形的旋转:旋转中心在旋转过程中保持不动。旋转的特征:图形中每一点都绕着旋转中心旋转了同样大小的角度,对应的点到中心的距离相等,对应线段、角均相等。旋转对称图形:旋转一定角度后能与自身重合。3.4 简单的旋转作图一、学习目标定位1经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。2能够按要求作出简单平面图形旋转后的图形。二、重点难点解析重点:利用基本作图求作简单图形旋转后的图形。难点:正确运用作图的步骤,正确运用作图语言。三、教学过程(一)巧设情景问题,引入课题上节课我们探讨了生活中的旋转,那什么样的运动是旋转呢?旋转有什么性质呢?大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗? 在原图上找了四个点,即O点、A点、B点、C点,如图(教师把该生所画的图在投影上放影)这四个点可以是能表示这面小旗子的关键点.因为旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所组成的旋转角彼此相等,所以根据已知:要把这面小旗绕O点按顺时针旋转90.我在方格中找到点A、B、C的对应点A、B、C,然后连接,就得到了所求作的图形.同学们在作图过程中,基本掌握了作图的一个要点:(1)定好旋转中心,认准旋转方向,确定旋转角度。(2)找图形的关键点。这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?这节课我们就来研究:简单的旋转作图.(二)讲授新课我们通过一例题来说明简单图形旋转后的图形的作法例1:如图,ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.假设顶点B、C的对应点分别为点E、点F,则BOE、COF、AOD都是旋转角. DEF就是ABC绕点O旋转后的三角形。根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则BOE=COF=AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形。使用直尺和圆规,把这一旋转后的图形作出来,要注意把痕迹保留下来.(教师一边叙述,板书作法,一边强调正确使用直尺、圆规,同时作图;学生作图)解:(1)连接OA、OD、OB、OC.(2)如下图,分别以OB、OC为一边作BOE、COF,使得BOE=COF=AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF、ED、FD.DEF,就是ABC绕O点旋转后的图形.本题还有没有其他作法,可以作出ABC绕O点旋转后的图形DEF吗?(同学们讨论、归纳)答:1.可以先作出点B的对应点E,连结DE,然后以点D、E为圆心,分别以AC、BC为半径画弧,两弧交于点F,连结DF、EF,则DEF就是ABC绕点O旋转后的图形.2.也可以先作出点C的对应点F,然后连结DF.因为ABC与DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即DEF.接下来,大家来看课本71页想一想:答:还需要知道绕哪个点旋转,旋转的角度是多少?就是要知道旋转中心和旋转角.确定一个三角形旋转后的位置的条件为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省双鸭山市名校2025年中考仿真模拟卷(二)英语试题含答案
- 上海交通职业技术学院《宠物疾病学》2023-2024学年第二学期期末试卷
- 山西省大同市云冈区翰林学校2025届数学五下期末考试模拟试题含答案
- 郑州美术学院《机器人视觉技术》2023-2024学年第二学期期末试卷
- 新疆工程学院《魏晋人物与文化》2023-2024学年第一学期期末试卷
- 江苏省东台市第二教育联盟重点达标名校2025届初三5月第四次测评化学试题含解析
- 浙江省杭州市富阳区2025年初三质量检查化学试题含解析
- 民办安徽旅游职业学院《物料与能量衡算原理》2023-2024学年第二学期期末试卷
- 江苏第二师范学院《财务管理学》2023-2024学年第二学期期末试卷
- 三亚航空旅游职业学院《生物制药大实验》2023-2024学年第二学期期末试卷
- T-KTSDN 2401-2024 地面供暖系统清洗维保操作技术服务规范
- 2025年建投国电准格尔旗能源有限公司招聘笔试参考题库含答案解析
- 2025年鹤壁汽车工程职业学院单招职业技能考试题库汇编
- 第11课《山地回忆》课件-2024-2025学年统编版语文七年级下册
- 水电站安全生产培训
- 2025年焦作大学高职单招职业技能测试近5年常考版参考题库含答案解析
- 医院感染的分类及定义
- 2025年国家药品监督管理局特殊药品检查中心招聘6人历年高频重点提升(共500题)附带答案详解
- 兰州铁路局招聘笔试冲刺题2025
- 2025银行协议存款合同
- DB51T 2679-2020 钢轨被动式高速打磨技术规范
评论
0/150
提交评论