2017年南京市中学考试数学精彩试题及问题详解解析汇报.doc_第1页
2017年南京市中学考试数学精彩试题及问题详解解析汇报.doc_第2页
2017年南京市中学考试数学精彩试题及问题详解解析汇报.doc_第3页
2017年南京市中学考试数学精彩试题及问题详解解析汇报.doc_第4页
2017年南京市中学考试数学精彩试题及问题详解解析汇报.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实用文档第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算12+(-18)(-6)-(-3)2的结果是( )A 7 B 8 C 21 D36【答案】C考点:有理数的混合运算2. 计算的结果是( )A B C D【答案】C【解析】试题分析:根据乘方的意义及幂的乘方,可知=.故选:C考点:同底数幂相乘除3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( )A三棱柱 B四棱柱 C 三棱锥 D四棱锥 【答案】D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选:D考点:几何体的形状4. 若,则下列结论中正确的是 ( )A B C. D【答案】B【解析】试题分析:根据二次根式的近似值可知,而,可得1a4.故选:B考点:二次根式的近似值5. 若方程的两根为和,且,则下列结论中正确的是 ( )A是19的算术平方根 B是19的平方根 C.是19的算术平方根 D是19的平方根【答案】C考点:平方根6. 过三点(2,2),(6,2),(4,5)的圆的圆心坐标为( )A(4,) B(4,3) C.(5,) D(5,3)【答案】A【解析】试题分析:根据题意,可知线段AB的线段垂直平分线为x=4,然后由C点的坐标可求得圆心的横坐标为x=4,然后设圆的半径为r,则根据勾股定理可知,解得r=,因此圆心的纵坐标为,因此圆心的坐标为(4,).故选:A考点:1、线段垂直平分线,2、三角形的外接圆,3、勾股定理第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7. 计算: ; 【答案】3,3【解析】试题分析:根据绝对值的性质,可知|-3|=3,根据二次根式的性质,可知.故答案为:3,3.考点:1、绝对值,2、二次根式的性质8. 2016年南京实现约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 【答案】1.05104考点:科学记数法的表示较大的数9. 若式子在实数范围内有意义,则的取值范围是 【答案】x1【解析】试题分析:根据分式有意义的条件,分母不为0,可知x-10,解得x1.故答案为:x1.考点:分式有意义的条件10. 计算的结果是 【答案】6【解析】试题分析:根据二次根式的性质化简后合并同类二次根式可得=.故答案为:.考点:合并同类二次根式11. 方程的解是 【答案】x=2考点:解分式方程12. 已知关于的方程的两根为-3和-1,则 ; 【答案】4,3【解析】试题分析:根据一元二次方程的根与系数的关系,可知p=-(-3-1)=4,q=(-3)(-1)=3.故答案为:4,3.考点:一元二次方程的根与系数的关系13. 下面是某市20132016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年【答案】2016,2015【解析】试题分析:根据条形统计图可知私家车拥有最多的年份为2016年,由折线统计图可知2015年的私家车的拥有量增长率最高.故答案为:2016,2015.考点:1、条形统计图,2、折线统计图14. 如图,是五边形的一个外角,若,则 【答案】425考点:1、多边形的内角和,2、多边形的外角15. 如图,四边形是菱形,经过点,与相交于点,连接,若,则 【答案】27【解析】试题分析:根据菱形的性质可知AD=DC,ADBC,因此可知DAC=DCA,然后根据三角形的内角和为180,可知DAC=51,即ACE=51,然后根据等弧所对的圆周角可知DAE=D=78,因此可求得EAC=78-51=27.故答案为:27.考点:1、菱形的性质,2、圆周角的性质,3、三角形的内角和16. 函数与的图像如图所示,下列关于函数的结论:函数的图像关于原点中心对称;当时,y随x的增大而减小;当时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 【答案】考点:一次函数与反比例函数三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17. 计算.【答案】 【解析】试题分析:根据分式的混合运算的法则,可先算括号里面的(通分后相加减),然后把除法转化为乘法,再约分化简即可.试题解析:.考点:分式的混合运算18. 解不等式组请结合题意,完成本题的解答.(1)解不等式,得 ,依据是_.(2)解不等式,得 .(3)把不等式,和的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】【解析】试题分析:分别求解两个不等式,系数化为1时可用性质2或性质3,然后画数轴,确定其公共部分,得到不等式组的解集.考点:解不等式19. 如图,在中,点分别在上,且相交于点.求证.【答案】证明见解析试题解析:四边形是平行四边形,.,即.考点:1、平行四边形的性质,2、全等三角形的判定与性质20. 某公司共25名员工,下标是他们月收入的资料.月收入/元45000180001000055004800340050002200人数111361111(1)该公司员工月收入的中位数是 元,众数是 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)3400,3000. (2)利用中位数可以更好地反映这组数据的集中趋势【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率. 【答案】(1) (2) 考点:概率22. “直角”在初中几何学习中无处不在.如图,已知,请仿照小丽的方式,再用两种不同的方法判断是否为直角(仅限用直尺和圆规).小丽的方法如图,在上分别取点,以为圆心,长为半径画弧,交的反向延长线于点,若,则.【答案】作图见解析【解析】试题分析:方法一是根据勾股定理作图,方法二是根据直径所对的圆周角为直角画图.方法2:如图,在上分别取点,以为直径画圆.若点在圆上,则.考点:基本作图作直角23. 张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买个甲种文具时,需购买个乙种文具.(1)当减少购买一个甲种文具时, , ;求与之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?【答案】(1)99,2(2)甲、乙两种文具各购买了60个和80个【解析】试题分析:(1)根据“每减少购买1个甲种文具,需增加购买2个乙种文具”可直接求解;根据的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.考点:1、一次函数,2、二元一次方程组24. 如图,是的切线,为切点.连接并延长,交的延长线于点,连接,交于点.(1)求证:平分.(2)连结,若,求证.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)连接OB,根据切线的性质和角平分线的概念可证明;(2)根据角平分线的性质可证明ODB是等边三角形,然后根据平行线的判定得证.试题解析:(1)如图,连接.是的切线,又,平分.又,是等边三角形.考点:1、圆的切线,2、角平分线的性质与判定,3、平行线的判定25. 如图,港口位于港口的南偏东方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正西方向的处,它沿正北方向航行5,到达处,测得灯塔在北偏东方向上.这时,处距离港口有多远?(参考数据:)【答案】35km【解析】试题分析:过点作,垂足为.构造直角三角形的模型,然后解直角三角形和平行线分线段成比例的定理列方程求解即可.,.又为的中点,.因此,处距离港口大约为35.考点:解直角三角形26. 已知函数(为常数)(1)该函数的图像与轴公共点的个数是( )A.0 B.1 C.2 D.1或2(2)求证:不论为何值,该函数的图像的顶点都在函数的图像上.(3)当时,求该函数的图像的顶点纵坐标的取值范围.【答案】(1)D(2)证明见解析(3)试题解析:(1).(2),所以该函数的图像的顶点坐标为.把代入,得.因此,不论为何值,该函数的图像的顶点都在函数的图像上.(3)设函数.当时,有最小值0.当时,随的增大而减小;当时,随的增大而增大.又当时,;当时,.因此,当时,该函数的的图像的顶点纵坐标的取值范围是.考点:二次函数的图像与性质27. 折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片(图),使与重合,得到折痕,把纸片展平(图).第二步,如图,再一次折叠纸片,使点落在上的处,并使折痕经过点,得到折痕,折出,得到.(1)说明是等边三角形.【数学思考】(2)如图.小明画出了图的矩形和等边三角形.他发现,在矩形中把经过图形变化,可以得到图中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3,另一边长为.对于每一个确定的的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论