




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.4.2 基本不等式的应用,第3章 3.4 基本不等式 (a0,b0),学习目标 1.熟练掌握基本不等式及变形的应用. 2.会用基本不等式解决简单的最大(小)值问题. 3.能够运用基本不等式解决生活中的应用问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 用基本不等式求最值,思考 因为x212x,当且仅当x1时取等号.所以当x1时,(x21)min2. 以上说法对吗?为什么?,答案 错.显然(x21)min1. x212x,当且仅当x1时取等号.仅说明曲线yx21恒在直线y2x上方,仅在x1时有公共点. 使用基本不等式求最值,不等式两端必须有一端是定值.如果都不是定值,可能出错.,梳理 基本不等式求最值的条件: (1)x,y必须是 ; (2)求积xy的最大值时,应看和xy是否为 ;求和xy的最小值时,应看积xy是否为 ; (3)等号成立的条件是否满足.,非负数,定值,定值,思考辨析 判断正误,题型探究,例1 (1)若x0,求函数yx 的最小值,并求此时x的值;,类型一 基本不等式与最值,解答,(2)设0x ,求函数y4x(32x)的最大值;,解答,(3)已知x2,求x 的最小值;,解答,解 x2,x20,,解答,即x4,y12时,上式取等号. 故当x4,y12时,(xy)min16.,当且仅当x1y93,即x4,y12时,上式取等号, 故当x4,y12时,(xy)min16.,反思与感悟 在利用基本不等式求最值时要注意三点:一是各项均为非负数;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件是否具备.,跟踪训练1 (1)已知x0,求f(x) 3x的最小值;,解答,f(x)的最小值为12.,解 x3,x30,,f(x)的最大值为1.,解答,解答,(3)设x0,y0,且2x8yxy,求xy的最小值.,解 方法一 由2x8yxy0,得y(x8)2x.,xy的最小值是18.,xy的最小值是18.,类型二 基本不等式在实际问题中的应用,解答,解 设矩形菜园的长为x m,宽为y m, 则xy100,篱笆的长为2(xy) m.,当且仅当xy10时,等号成立. 所以这个矩形的长、宽都为10 m时,所用篱笆最短,最短篱笆为40 m.,命题角度1 几何问题的最值 例2 (1)用篱笆围一个面积为100 m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?,解答,解 设矩形菜园的长为x m,宽为y m,则2(xy)36,xy18,矩形菜园的面积为xy m2.,(2)一段长为36 m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?,当且仅当xy9时,等号成立. 所以这个矩形的长、宽都为9 m时,菜园的面积最大,最大面积为81 m2.,反思与感悟 利用基本不等式解决实际问题时,一般是先建立关于目标量的函数关系,再利用基本不等式求解目标函数的最大(小)值及取最大(小)值的条件.,跟踪训练2 以斜边为2的直角三角形的斜边所在的直线为轴旋转一周得一几何体,求该几何体体积的最大值,并求此时几何体的表面积.,解答,解 如图,设RtABC的斜边AB2,ACb,BCa,CD为斜边上的高,,由a2b24与a2b22ab得,SCDACCDBCCD(ACBC),命题角度2 生活中的最优化问题 例3 某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?,解答,解 设该厂每隔x天购买一次面粉,其购买量为6x吨. 由题意可知,面粉的保管及其他费用为 36x6(x1)6(x2)619x(x1). 设平均每天所支付的总费用为y元, 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.,引申探究 若受车辆限制,该厂至少15天才能去购买一次面粉,则该厂应多少天购买一次面粉,才能使平均每天所支付的费用最少?,解答,解 设x1,x215,),且x1x2.,15x1x2, x1x20,x1x2225,,当x15,即每15天购买一次面粉时,平均每天支付的费用最少.,反思与感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立,若等号不成立,可考虑利用函数单调性求解.,解析 设这批货物从A市全部运到B市的时间为t,则,所以这批货物全部运到B市,最快需要8小时.,答案,解析,跟踪训练3 一批货物随17列货车从A市以v千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于 千米,那么这批货物全部运到B市,最快需要_小时.,8,达标检测,1,2,3,4,解析 当0x1时,log2x0,,答案,解析,答案,解析,1,2,3,4,1,f(x)min1.,答案,解析,1,2,3,4,3.将一根铁丝切割成三段做一个面积为2 m2,形状为直角三角形的框架,则直角三角形周长的最小值为_ m.,42,当且仅当ab且ab4,即ab2时,取等号,,答案,解析,1,2,3,4,4,解析 由题意知3a3b3,即3ab3,所以ab1.,规律与方法,1.用基本不等式求最值: (1)利用基本不等式,通过恒等变形,以及配凑,使得“和”或“积”为定值,从而求得函数最大值或最小值.这种方法在应用的过程中要把握下列三个条件: “一正”各项为正数;“二定”“和”或“积”为定值;“三相等”等号一定能取到.这三个条件缺一不可. (2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.,(3)在求最值的一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 书法作业出售合同样本
- 交通设施合同样本
- 个人租赁公司合同样本
- 会议管理服务合同样本
- 修建水坝施工合同样本
- 乡村机井维修合同标准文本
- 保管及代销合同标准文本
- 保险类合同样本
- 国家电网考试技巧分享及试题及答案
- 国家电网考试重点复习试题及答案
- 2023-2024学年华东师大版八年级数学上册期末复习综合练习题
- 职业教育培训需求分析课件
- 2025版矿山安全生产责任承包协议范本3篇
- 并购重组税务处理-企业管理
- 四川凉山州人民政府办公室考调所属事业单位工作人员2人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年中国艾草行业市场现状、发展概况、未来前景分析报告
- 防走失应急预案
- 临床实验室管理学学习通超星期末考试答案章节答案2024年
- 中式烹调师理论知识测试题与参考答案
- 低压电工培训教案
- 外科护理风险
评论
0/150
提交评论