




已阅读5页,还剩143页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章,atomic structure and periodic law of elements,原子结构和元素周期律,物质,分子,原子,化学键,晶体,堆积,原子核,核外电子,物质的化学变化一般只涉及核外电子 运动状态的改变,原子结构主要是 研究核外电子运动的状态及其排布规律,电子运动状态的量子力学概念,氢原子的波函数,多电子原子的原子结构,本章主要内容包括:,原子的电子组态与元素周期表,第一节,一 、原子结构的认识史,1、古原子说,希腊词“原子”“atomos”,不可分割,2、近代原子学说,质量守恒定律,定组成定律,倍比定律,原子不可再分。,3、枣糕模型:,1906年诺贝尔物理学奖,4、Rutherford E有核原子模型,-粒子散射实验:,-粒子:,He+,Rutherford E “有核”原子模型:, 原子核好比是太阳,电子好比是绕太阳运动的行星,绕核高速运动。,该模型与经典的电磁学发生矛盾: 绕核电子应不停地连续辐射能量, 结果: (1)应得到连续光谱; (2)原子毁灭。 事实: (1)原子没有毁灭; (2)原子光谱也不是连续光谱而是不连续的线状光谱。,核外电子有怎样的状态呢?,1885年Balmer J发现在氢原子光谱的可见光区有5条明显的谱线:H、H、H、H、H (称巴尔麦系谱线)。,如何解决这一矛盾?,5、Bohr NHD玻尔理论,1913年,年轻的丹麦物理学家玻尔在总结当时最新的物理学发现(普朗克黑体辐射和量子概念、爱因斯坦光子论、卢瑟福原子带核模型等)的基础上建立了氢原子核外电子运动模型,解释了氢原子光谱,后人称为玻尔理论。,微观世界一个重要特征就是能量量子化(不连续)。,玻尔认为能量量子化可用来解决原子世界的结构问题, 建立了定态原子模型。,辐射能量的吸收和放出都不是连续的,只能是最小能量单位0(量子quantum)的整数倍。, = n0 = nh,普朗克量子论的中心思想:,玻尔理论-定态原子模型:,核外电子只能在量子化轨道(不连续的能量状态)上运动。电子在这些轨道上运动时,不辐射也不吸收能量。这种状态叫定态 (stationary state)。,1、量子化条件(定态假设),在一定轨道上运动的电子具有一定的能量E, 能量具有确定值,不能处于两个相邻轨道之间。,+,量子化轨道,定态 stationary state,能量具有确定值,基态 ground state,激发态 excited state,能量最低,n=1,n=2,n=3,氢原子核外电子能量公式,En= -2.1810-18 Z2n2 (Z=1) = - 2.1810-18 n2 (J),n为量子数(n=1,2,3),当 n=1,基态, E1= -2.1810-18 J,当n2,激发态, E2,(8.1),氢原子基态的能量为 -2.1810-18 J,氢原子的电离能(吸收)为 2.1810-18 J,电子离核无穷远时,会完全脱离原子核 电场的引力,电子的能量则增大到零。,综上所述:原子光谱是原子内电子能量变化的一种反映。既然氢原子内电子的能量变化是不连续的,即能量变化是“量子化”的。,所以氢原子光谱是不连续的线状光谱。,2、频率条件(跃迁假设),电子由一定态跃迁到另一定态时要吸 收或放出能量。,玻尔理论-定态原子模型:,跃迁:,电子的能量由一个能级改变到另一个能级。,+,基态(n1),激发态(n2),吸收能量,+,E = En2 - En1 =h,基态(n1),激发态(n2),吸收能量,+,E = En1 - En2 = h,基态(n1),激发态(n2),放出能量,能量差E以光的形式辐射,其辐射的 光子能量:,E=E2-E1=h(频率条件),(8.2),按式算出的波长和实验值一致。,-玻尔理论成功之处!,c= ,小结:玻尔理论,成功之处:运用量子化观点成功的解释 了氢原子或类氢离子(He 、 Li 2等单电子离子)的不连续光谱(线状光谱)。,不足之处:量子化假设时未能完全摆脱经典力学的束缚,无法解释多电子原子光谱。,结论:微观粒子的运动规律需用量子力学处理,核外电子的运动必须用量子力学来描述。,二、微观粒子的波粒二象性,德布罗意(L.de. Brogle )关系式,由此获得1929年诺贝尔物理学奖,粒子性物理量 (p, m, v),波动性物理量 ( ),Planck常数 (h),= 6.62610-34 Js = 6.62610-34 kg m2 s-1, 1927年戴维思(Davisson)和革末(Germer) 借鉴X衍射实验, 得到了电子衍射图,,电子衍射实验, 1927年戴维思(Davisson)和革末(Germer) 借鉴X衍射实验, 得到了电子衍射图,,证实了de Broglie 假设, 阴极射线管中两极间的小轮当电子流通过时会转动说明电子也具有粒子性。,说明电子也具有波动性。,电子衍射图的意义,电子具有波动性,波峰 + 波峰 = 明纹,波峰 + 波谷 = 暗纹,电子波是概率波,明纹,波强度大,电子出现概率大,暗纹,波强度小,电子出现概率小,【例8-1 】(1)电子在1V电压下的运动速度为5.9105m/s,电子的质量为9.110-31Kg,电子波的波长是多少?,解:,=1210-10(m),= 1200pm,【例8-1 】(2) 质量为1.010-8 Kg沙粒 以1.010-2 m/s速度运动,波长是多少?,解:,= 6.610-24 (m),结论:,电子 沙粒,质量 9.110-31Kg 1.010-8 Kg,波长 1210-10(m) 6.610-24 (m),宏观物体的波长,小到难以测量,以致其 波动性难以察觉,仅表现出粒子性。,微观世界粒子质量小,其波长不可忽略而 表现出波动性。,对电子波动性的正确解释是统计解释:可以是许多电子在相同条件下电子运动的统计结果 ,也可以是一 个电子在许多次相同实验中的统计结果(即电子的波动性是电子无数次行为统计的结果)。,如何理解电子的波动性?,电子的波动性和统计性规律相联系。,机械波和电磁波分别指介质质点或电磁场的振动在空间的传播。,电子波是概率波(probability wave),波强度大的地方电子出现的几率大。波长可用de Broglie关系式计算。,电子波的物理意义:只反映电子在空间各区域出现的概率大小。,结论,宏观物体 微观粒子,运动特点,确定的运动轨道 同时准确测定其位置和动量或速度,不存在确定的运动轨道 具有波粒二象性 不能同时准确测量位置和动量,描述方法,用经典力学,量子力学, 用统计方法,Heisenberg测不准关系式,x 为x方向坐标的测不准量,px 为x方向的动量测不准量,意义: 具有波动性的微观粒子没有确定的运动轨道,不符合经典力学的规律。 必须用统计规律,用在空间某一微区域可能出现的几率大小来描述。,例8-2 电子在原子核附近运动的速度约为6106ms-1,原子半径约10-10m。若速度误差为1%,电子的位置误差x有多大?,xh/(4mv) =,解:v = 6106ms-1 0.01,= 6104ms-1,6.626 10-34kgm2s-1,=110-9m,x比原子半径大10倍,无精确的位置。,4 9.110-31kg6 104ms-1,例 8-3 子弹(质量为0.01kg,速度1000ms-1)、尘埃(质量为10-9kg,速度10ms-1)、作布朗运动的花粉(质量为10-13kg,速度1ms-1)。若速度误差为1%,判断在确定这些质点位置时,测不准原理是否有实际意义?,解: 1. 子弹(质量为0.01kg,速度1000ms-1),xh/(4mv) =,解:v = 1000ms-1 0.01,= 10ms-1,6.626 10-34kgm2s-1,=5.2710-34m,4 0.01kg10ms-1,2.尘埃(质量为10-9kg,速度10ms-1),解:v = 10ms-1 0.01,=0. 1ms-1,6.626 10-34kgm2s-1,4 10-9kg0.1ms-1,=5.2710-25m,xh/(4mv) =,3.花粉(质量为10-13kg,速度1ms-1),解:v = 1ms-1 0.01,=0.01ms-1,6.626 10-34kgm2s-1,4 10-13kg0.01ms-1,=5.2710-20m,xh/(4mv) =,子弹: x 5.2710-34m 尘埃: x 5.2710-25m 花粉: x 5.2710-20m 4. 原子中的电子: x 110-9m比原子半径大10倍,例8-4 电视机显像管中运动的电子,假定加速电压为1000V,电子运动速度为107 ms-1 ,电子运动速度的误差为10%,判断电子的波动性对荧光屏上成像有无影响?,解:,6.626 10-34kgm2s-1,=5.810-11m,4 9.110-31kg106ms-1,很小可忽略,xh/(4mv) =,波粒二象性,统计性,能量量子化,原子核外电子运动的特征,de Broglie关系式仅适用于无作用力下微观粒子的运动。,原子中核外电子要受到原子核和其它电子的作用, 核外电子的运动就不适用于de Broglie关系式。,de Broglie关系式仅适用于无作用力下微观粒子的运动。,原子中核外电子要受到原子核和其它电子的作用, 核外电子的运动就不适用于de Broglie关系式。,1926年,Schrodinger E推导出了在力场作用下微观粒子运动的波动方程。,x, y, z电子在空间的坐标,m电子质量,E电子总能量,V电子势能, 电子波函数,薛定谔(Schrodinger)方程式, 波函数的物理意义不明确, 而 2 却有明确的物理意义,表示电子在某处(x, y, z )出现的概率密度,即微单位体积中电子出现的概率。, 量子力学用波函数(x, y, z)和相应的能量E描述电子运动状态。,小结:量子力学认为电子运动的几个特征,(1)电子具有波粒二象性。它具有质量、能量等粒子特征,又具有波长这样波的特征。电子的波动性与其运动的统计规律相联系,电子波是概率波。,(2)电子等微观粒子有与宏观物体完全不同的运动特征,不能同时测准它的位置和动量,不存在玻尔理论那样的轨道。它在核外空间的出现体现为概率的大小。,(3)电子的运动状态可用波函数和相应能量来描述。,(4) 每个对应确定的能量值,称为 “定态”(包括基态和激发态)。电子的能量具有量子化的特征,是不连续的。,波粒二象性,统计性,能量量子化,原子核外电子运动的特征,氢原子的波函数,第二节,(wave-particle duality of hydrogen),一、波函数,r : 径向坐标, 决定了球面的大小: 角坐标, 由 z轴沿球面延伸至 r 的弧线所表示的角度. : 角坐标, 由 r 沿球面平行xy面延伸至xz面的弧线所表示的角度.,直角坐标( x, y, z)与球坐标 (r,) 的转换,波函数 = 薛定谔方程的合理解 = 原子轨道,波动力学的成功: 轨道能量的量子化不需在建立数学关系式时事先假定., 量子力学的原子轨道与玻尔理论 中的固定原子轨道的概念完全不同。,玻尔理论,半径为52.9pm 的球形轨道,固定轨道,量子力学,代表1s电子的运动状态,相应的能量是-2.1810-18 (J),基态氢原子轨道,并不表示电子在半径确定的运动轨道上运动。,二、量子数,为了得到电子运动状态合理的解,必须引用只能取某些整数值的三个参数,称它们为量子数。,主量子数:n=1,2,3,4 角量子数:l=0,1,2,(n-1) 磁量子数:m=0,1,2,3,l,n,l,m(r, , ),代表一个原子轨道 。,三个量子数的物理意义及取值范围,决定电子离核的远近和能量的高低。,取值:n=1,2,3n 正整数,符号:K,L,M,n越大,电子离核的平均距离越远,能量越高。,1、主量子数n(电子层数),(principal quantum number),对单电子体系(H原子或类H离子He+等)电子能量完全由主量子数决定 。,如: H原子的电子能量: En=-2.1810-18/n2(J),可见,n越大,能量越高。,2、角量子数l (亚层,能级),取值:l = 0, 1, 2, 3 (n-1),符号: s, p, d, f,l 受n限制,共可取n个值,决定原子轨道的形状,(angular momentum quantum number),s 轨道 球形,p 轨道 哑铃形 (双纺锤形),d 轨 道 有 两 种 形 状 : 多 纺 锤 形,在多电子原子中,轨道能量高低由 n, l 共同决定,n同,l 不同的原子轨道,l 越大,能量越高。,EnsEnpEndEnf,而对氢原子(单电子体系):,Ens= Enp = End = Enf,3、磁量子数m ( magnetic quantum number),例:n=3, l=1时, m = 0, 1,p轨道三种不同的伸展方向, 即 3px, 3py, 3pz, 与角动量的取向有关,取值是量子化的 m可取 0,1, 2l 值决定了角度函数的空间取向 n,l 值相同, m不同的轨道互为等价轨道,p 轨道(l = 1, m = +1, -1 ,0) m 三种取值, 三种取向, 三条等价(简并) p 轨道.,s 轨道(l = 0, m = 0 ) : m 一种取值, 空间一种取向, 一条 s 轨道.,d 轨道(l = 2, m = 0, -2 ,-1, +1 ,+2) m 五种取值, 空间五种取向, 五条等价(简并) d 轨道.,f 轨道 ( l = 3, m = +3, +2, +1, 0, -1, -2, -3 ) m 七种取值, 空间七种取向, 七条等价(简并) f 轨道.,本课程不要求记住 f 轨道具体形状!,综上所述:,(1)n, l, m三个量子数的组合有一定的规律。,(2)一组合理的n, l, m可决定一个波函数,即决定一个原子轨道。,三个量子数和原子轨道数,n l m 同层轨道数(n2),1 0 0 1s 1(12),4(22),0 2s,2pz,2px,2py,三个量子数和原子轨道数(续),n l m 同层轨道数(n2),9(32),n n2,0 3s,3pz,3px 3py,3dz2,3dxz 3dyz,3dxy 3dx2-y2,4.自旋量子数 si (spin quantum number),电子运动由两部分组成:,(1)绕核的空间运动:由n,l,m三个 量子数决定 。,(2)自旋运动:由自旋量子数si 决定。,特 点:与n, l, m无关, 不是通过解薛定谔方程得来的。,想象中的电子自旋 两种可能的自旋方向: 正向(+1/2)和反向(-1/2) 产生方向相反的磁场 相反自旋的一对电子, 磁场相互抵消.,Electron spin visualized,描述一个能级用 n、l 二个量子数,描述一个电子层用 n(主量子数),【例8-2 】已知基态N原子最外层的电子构型为2s22p3,试用n,l,m, si四个量子数来描述2p亚层上三个电子的运动状态。,解: n=2, l=1,m = 0, si = +1/2,m =+1, si = +1/2,m = -1, si = +1/2,(si或全部为-1/2),运动状态也可表示成:, (2,1,0,+1/2), (2,1,+1,+1/2) (2,1,-1,+1/2),平行自旋,【思考题8-1】下列各套量子数哪些是不可能存在的?,(1)2,0,-1, -1/2,(2)1,2, 0, +1/2,(3)3,0, 0, +1/2,(4)2,1,+1,+1/2,三、概率密度和电子云,概率密度: ,代表电子在核外空间某点( r, , )出现的概率密度。,概率: dv,代表某点周围微单位体积中电子出现的概率。, 电子云: 的形象化表示,单位体积内黑点数与 值成正比的图形。,概率密度和电子云是同义词,0,2.0,r/a0,1s 2,图8-5 氢原子 图和1s电子云图,-r, 离核愈远, 愈小,电子云 愈疏,电子出现的概率密度愈小。, 离核愈近, 愈大,电子云 愈密,电子出现的概率密度愈大。,四、原子轨道的图形表示,n,l,m(r, ) = Rn.l(r) Yl.m(, ),波函数,是离核距离r的函数,与n,l有关,是方位角, 函数,只与l,m有关,氢原子的一些波函数及其能量 见p157表8-1,n,l,m(r, )= Rn.l(r) Yl.m(, ),角度波函数,Yl.m(, )随方位角,的变化作图(图8-6),原子轨道的角度分布图(又称Y函数图),从角度这个侧面观察电子的运动状态。,(作图方法不作要求),(一) H原子轨道的角度分布图,x,z,Ys,+,y,x,x,z,x,z,Ypy,Ypx,Ypz,+,-,-,+,+,-,图8-6 氢原子的S、P原子轨道角度分布图,-,+,+,+,+,+,-,-,-,-,-,+,y(z,z),x(y,x),z,y,x,x,Ydxy,Ydz2,Ydx2-y 2,(Ydyz,、Ydxz),图8-6 氢原子的d原子轨道角度分布图(续),原子轨道角度分布图,Yl.m(,) 与,关系图,因为Y与n无关,故l,m相同而n不同 的原子轨道,其角度分布图完全相同。 如 2pz, 3pz, 4pz,角度分布图形完全相同,原子轨道角度分布图中正负号除反映 函数值的正负之外,还反映电子波动 性的一个方面 (类似机械波中的波峰 与波谷) 。,原子轨道角度分布图不能代表原子轨 道(波函数 )的完整图形。,(二)电子云角度分布图,概率密度与方位角的关系,2n,l,m(r, )= R2n.l(r) Y2l.m(, ),电子云角度分布图(又称Y2图) (作图方法不作要求),电子云角度分布图,(Y2l.m(, )与,的关系图),(但不表示电子出现的概率密度与离核半径r的关系。),作图方法类似于原子轨道的角度分布图。,x,z,Ys2,y,x,x,z,x,z,Ypy2,Ypx2,Ypz2,图8-8 S、P轨道电子云的角度分布图,y,x,z,y,x,x,Ydz2,Ydx2-y 2,图8-8 d轨道电子云角度分布图,形状相似,但有几点区别:,(1)Y肥大,Y2 瘦一些,因为Y1, Y2更小。,(2) Y有正负号, Y2无正负之分,全部 为正,因为Y2变正。,(3) Y ,用于讨论化学键的形成; Y2 ,用于讨论分子的几何构型。,(三)电子云的径向函数分布图,概率分布与离核距离r的关系,电子云径向 分布函数图,电子云角度分布图,( D(r) r ),(Y2l.m(, ) ,),描述电子出现的 概率与离核距离r 的关系,描述电子出现的 概率密度与方位 角的关系,2n,l,m(r, )= R2n.l(r) Y2l.m(, ),径向分布函数,物理意义:其值大小表示电子在半径 r的球面上,单位厚度球壳中电子出现的概率。,概率=, 2,4r2dr,= R2n.l(r) 4r2dr,= D(r) dr,径向分布函数图,( D(r) r ),径向分布函数图的特征,(1)基态H原子中电子出现概率的极大值位于r = a0(52.9pm),与玻尔半径相同的球面上,但与概率密度极大值处不一致。,R1s = A1e-Br, R21s = A21e-2Br,1 2 3 4,r / a0,D(r),已知:D(r) = 4r2R2,这两个相反因素决定了r = a0 处 D(r)最大。, 怎样理解核附近几率密度很大,但出现的几率D(r)却趋几近于零?, r愈小,R21s 愈大,, D(r) = 4r2R2 0.,D(r),r / a0,1 2 3 4,从量子力学观点来理解:,玻尔半径(52.9pm)就是电子出现概率最大的球壳离核的距离。,则 近核旁r0.,但 r愈小,r2 更小,,(2)不同状态电子的径向分布函数图的 峰数不同,共 (n-l ) 个。,例:3s 3个峰(30 = 3),3p 2个峰(31 = 2),3d 1个峰(32 = 1),有几个峰,即表示在核外有几个概率较大的区域。,(图8-10),(3)n相同, l 不同时, 其D(r)分布特点不同。, 第一峰离核距离顺序:,nsnpndnf,不同l的电子钻穿到核附近能力顺序:,nsnpndnf,说明:玻尔固定轨道是不存在的,外层电子也可在内层出现, 是电子波动性的反映。,对l相同,n不同时,主峰距核位置不同,n越小,距核越近,n越大,距核越远,好象电子处于不同的电子层。,小结 氢原子核外电子运动状态的描述,(一),电子等微观粒 子运动具有两个基本特征。,能量量子化 波粒二象性,薛定锷方程(电子波动方程),对此方程求解, 可得一套波函数 与相应能量。, n, l, m三个量子数的组合有一定的规律,一组合理的n, l, m可决定一个波函数(即原子轨道)。,描述一个原子轨道,用n, l, m三个量子数。描述电子的运动状态,用n, l, m, si 四个量子数。, ,反映电子在核外出现的几率密度,电子云是几率密度的形象化描述。, 2,(二)波函数和电子云还可用图解方法表示,从不同目的出发可得各种类型分布图。,n,l,m(r, ) = Rn.l(r) Yl.m(, ), 原子轨道角度分布图 Yl.m(, ) ,的关系图,反映角度波函数与方位角的关系 (从方位角这个侧面观察电子的 运动状态),它与离核距离 r 远近无关,其“+,-”号反映波动性。,电子云角度分布图 Y2l.m(, ) ,的关系图,描述电子出现的概率密度 与方位角的关系,电子云径向分布函数图 D(r) r关系图,描述电子出现的概率与 离核距离r 的关系,概率 = 概率密度体积,第三节,多电子原子的原子结构,氢原子或 类氢离子,精确求解 波函数,薛定锷方程,多电子原子,近似求解 波函数,多电子原子中,每个电子都各有其波函数 ,其具体形式也取决于三个量子数:,多电子原子每个电子的波函数的角度部分 Y(,)与氢原子的Y( ,)相似。,多电子原子中原子轨道角度分布图与氢原子相似,可近似应用到多电子原子的有关氢原子结构的某些结论:,n, l,m 。,一、多电子原子的能级和徐光宪公式,e,ZH = 1,单电子体系(氢原子或 类氢离子):,原子轨道的能量: E=- 2.1810-18 / n2 (J),能级顺序:,核外只有一个e,该电子只受核的吸引。,E1sE2s = E2p E3s = E3p = E3d ,多电子原子体系,i,Z,每个电子受核的吸引, 同时还受到(Z1)个 其他电子的排斥。,近似的处理方法:把其他电子对某个i电子的排斥, 看作是其他电子屏蔽住原子核,抵消了部分核电荷对电子i的吸引力。,屏蔽效应:,电子的相互排斥对核电荷的抵消作用。,Z= Z,多电子原子中原子轨道能量:,E与Z,n,有关:,Z愈大,相同轨道能量愈低;n愈大,能量愈高; 愈大能量愈高。,影响i值的因素:,i是指其余电子对电子i的 总屏蔽常数,它取决于电子i所处状态和其余电子的数目和状态。,(1)外层电子对内层电子的屏蔽作用可忽略( i = 0)。,(2)内层电子对外层电子的屏蔽作用较强,(3)同层电子之间也有屏蔽作用,但比内 层电子的屏蔽作用弱。,多电子原子的能级,(1)n相同,l 不同的能级顺序:,EnsEnpEndEnf(钻穿效应),l 越小,离核越近,电子钻穿能力越强, 即回避其他电子的屏蔽作用的能力越强。,i越小,Z越大,能量越低。,(2)l 相同,n不同的能级顺序:,E1sE2sE3s, n越大,内层电子数多, i大 ; Z小,,(屏蔽效应),E2pE3pE4p,(3)n、l 都不相同时,可能发生能级交错。 (主量子数n小的反而能量较高),【例8-3】19K 1s2 2s2 2p6 3s2 3p6 4s1,E4sE3d (能级交错),6p 000 5d 00000 4f 0000000 6s 0,6p5d 4f 6s,5p 000 4d 00000 5s 0,5p 4d 5s,4p 000 3d 00000 4s 0,4p 3d 4s,3p 000 3s 0,3p 3s,2p 000 2s 0,1s 0,2p 2s,1s,6 5 4 3 2 1,能量与周期,图8-1 鲍林近似能级图,这是基态原子电子在核外排布时的填充顺序。,徐光宪公式: n0.7l,表8-3 多电子原子能级组,原子能级由低到高顺序为:,1s, (2s,2p),(3s,3p) ,(4s,3d,4p),(5s,4d,5p),(6s,4f,5d,6p),第一位数字相同者组合为一组,括号表示能级组,是基态多电子原子轨道能级高低的一种定量的依据,此顺序与鲍林近似能级顺序吻合。,能量最低原理,“系统的能量越低,越稳定。”,基态多电子原子核外电子排布总是 尽可能使体系的能量处于最低状态。,一般情况按鲍林进似能级图从1s开始,然后按能级从低到高的顺序填充(个别情况例外)。,二、核外电子排布规律,Pauli不相容原理,在一个原子中,不可能有四个量子数(n、l、m、 si)完全相同的两个电子存在。 即每一个原子轨道最多只能容纳两个自旋方向相反的电子。,推论:每个电子层最多容纳电子数2n2个,各亚层最多容纳电子数2(2l+1)个。 亚层 S P d f 电子数 2 6 10 14, Hund 规则,在简并轨道中,电子尽可能分占不同 的轨道,且平行自旋。,【例8-4】基态C原子的电子排布式:1s2 2s2 2p2,电子排布 轨道式:,1s,2s,2p, ,Hund 规则特例:,简并轨道全充满:p6 d10 f 14 半充满:p3 d 5 f 7 或全空:p0 d 0 f 0,原子体系为稳定状态,24Cr 1s22s22p63s23p6 3d 54s1 (半充满) 3d44s2 29Cu 1s22s22p63s23p6 3d104s1 (全充满) 3d94s2,【例8-5 】 24Cr 29Cu 电子排布,根据原子序数,遵守上述原则,可排出绝大多数原子基态时的电子层结构(但六、七周期副族元素有例外)。,1、书写电子排布式时,一律按电子层顺序由小到大书写(不按电子填充顺序)。,【例8-6 】26Fe基态电子排布式:,2、书写电子排布式时,通常把内层已达到稀有气体电子层结构的部分,用“原子蕊”表示。,【例8-7】26Fe基态原子电子排布式为 1s2 2s2 2p6 3s2 3p6 3d6 4s2 可写成 Ar 3d64s2,原子蕊,价层电子排布,【例8-8】Fe-2e = Fe2+ 26Fe :Ar 3d6 4s2,Fe2+: Ar 3d6 4s0 (失去4s上2e),填电子时 E4sE3d,第四节,(Electronic Group State of the Atom & Periodic Chart of the Elements),元素周期律:元素性质随核电荷递增呈周期性变化的规律。元素原子核外电子排布(电子组态)的周期性是元素周期律的基础。,元素周期表是元素周期律的表现形式。,109种元素,元素周期表,7个周期(3短4长) 16个族 (8主8副) 5个区 ( s,p,d,ds,f ),一、核外电子表排布与周期表,元素周期表,A,A,A,A,A,A,A,0,B,B,B,B,B,B,B,B,1,2,3,4,5,6,7,S区,d区,ds区,p区,f 区,镧系,锕系,(一)周期与能级组,周期 与 能级组 相对应,7个周期,13为短周期 47为长周期,徐光宪公式 ( n+0.7l ),整数相同的各能级 组合为一个能级组,7个能级组,表8-4 能级组与周期的关系,能级组,起止元素,元素个数,1s2,元素在周期表中所处的周期数等于它的最外电子层数n。,长周期与短周期不同之处是: 长周期含过渡元素和内过渡元素。,过渡元素 周期 核外电子排布,4 (21Sc30Zn) 5 (39Y 48Cd) 6 (72Hf80Hg),最后一个电子 入次外层d轨道,内过渡元素:,镧系 57La71Lu 锕系 89Ac103Lr,最后一个电子入倒数第三层 f 轨道,(二)族与原子的电子表组态,16个族,主族(A族):AA,零族,副族(B族): BB, ,主族元素价电子层结构特点:,(1)最后一个电子填充在最外层ns或np亚层的轨道上。,(2)族数与最外层电子数相等(零族除外)。,(3)主族元素最外电子层就是价电子层, ns12 np16;价电子层中的电子称为价电子。,副族元素价电子层结构特点:,(1)最后一个电子填入d 或 f 亚层的轨道上。,(2)价层电子层结构,(3)族数与价电子数的关系,B-B: (n-1)d 1-5 ns1-2 族数 = 价电子数 例 25Mn: Ar3d 54s2B族,B-B:(n-1)d 10ns1-2 族数 = ns上的电子数,: (n-1)d 6-10ns0,1,2 情况较为复杂,(三)元素周期表中的分区,根据价层电子组态的特征,元素分为五个区。,周期表中元素的分区,A,A,A,A,A,A,A,0,B,B,B,B,B,B,B,1,2,3,4,5,6,7,S区,d区,ds区,p区,f 区,镧系,锕系,ns12,(n-1)d19 ns12,(n-1)d10ns12,ns2 np16,(n-2)f 014 (n-1)d02ns2,元素在各区的分布,价层电子构型 最后一个e 所入轨道,S区 A,A ns1-2 s,P区 A-A,0族 ns2np1-6 p,ds区 B,B (n-1)d10ns1-2 d,d区 B-B , (n-1)d1-9ns1-2 d,f 区 La系,Ac系 (n-2)f0-14(n-1)d0-2ns2 f,d区元素:最外层1-2e,结构差别在次外层。都是金属元素,有可变氧化态,性质相似。,f区元素:最外层、次外层几乎相同, 差别在外数第三层,都是金属,性质极为相似。,【例8-9 】电子层结构与周期表的关系 (以第四周期为例),对应的能级组:4s 3d 4p(18个元素) 能级的顺序:E4s E3dE4p,KCa ScTiVCrMnFeCoNi CuZn GaGeAsSeBrKr,4s14s2 s区 A,A,3d1-84s1-2 d区 B-B, ,3d104s1-2 ds区 B,B,4s24p1-6 P区 A-A,零族,【例8-9 】电子层结构与周期表的关系 (以第四周期为例),21Sc: 1s2 2s2 2p6 3s2 3p6 3d1 4s2 或表示为 Ar 3d14s2,从21Sc30Zn核外电子排布有 两处值得注意:,24Cr:Ar 3d5 4s1 (d5为半充满),29Cu: Ar 3d10 4s1 (d10为全充满),原子核外电子排布呈现明显的周期性 变化(电子填充始终是ns1np6),第一周期例外。,电子层结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省晋源区第七小学2025届三下数学期末学业质量监测试题含解析
- 重庆医科大学《建筑师职业基础(含务实与法规)》2023-2024学年第二学期期末试卷
- 山东省聊城莘县联考2025届初三下学期中考试英语试题含答案
- 伊宁县2025届五下数学期末调研模拟试题含答案
- 上海市第八中学2025届中考预测金卷:数学试题(浙江卷)含解析
- 西南科技大学《电视综艺栏目编导》2023-2024学年第二学期期末试卷
- 接收发展对象大会流程
- 2025数据中心服务器采购与维护工程合同
- 《2025高速数据传输接入服务合同》
- 2025设备租赁合同「样式」
- 国家开放大学毕业生登记表-
- 电脑故障诊断卡说明书
- 企业重组所得税特殊性处理实务(深圳市税务局)课件
- 2022年7月2日江苏省事业单位招聘考试《综合知识和能力素质》(管理岗客观题)及答案
- 瓦斯超限事故专项应急预案
- 苗木质量保证措施
- 【公司利润质量研究国内外文献综述3400字】
- 水利工程分部分项划分表
- 学生班级卫生值日表模板下载
- 责任商业联盟RBA(CSR)知识培训
- 放射工作人员培训考核试题及答案
评论
0/150
提交评论