高二数学选修2-12-22-3知识点(全面).doc_第1页
高二数学选修2-12-22-3知识点(全面).doc_第2页
高二数学选修2-12-22-3知识点(全面).doc_第3页
高二数学选修2-12-22-3知识点(全面).doc_第4页
高二数学选修2-12-22-3知识点(全面).doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

选修2-1、2-2. 2-3知识点选修2-1第一章 常用逻辑用语互否为逆为逆互否互否互否互逆原命题若p则q互逆逆命题若q则p逆否命题若则逆否命题若则1. 命题及其关系 四种命题相互间关系: 逆否命题同真同假2. 充分条件与必要条件是的充要条件:是的充分不必要条件:是的必要不充分条件:是的既充分不必要条件:3. 逻辑联结词 “或”“且”“非”4. 全称量词与存在量词 注意命题的否定形式(联系反证法的反设),主要是量词的变化.例:“a=1”是“”的( )A充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件第二章 圆锥曲线与方程1. 三种圆锥曲线的性质(以焦点在轴为例)椭圆双曲线抛物线定义与两个定点的距离和等于常数与两个定点的距离差的绝对值等于常数与一个定点和一条定直线的距离相等标准方程图形顶点坐标(a,0),(0,b)(a,0)(0,0)对称轴x轴,长轴长2ay轴,短轴长2bx轴,实轴长2ay轴,虚轴长2bx轴焦点坐标(,0)(,0)(,0)离心率e1准线渐近线焦半径a,b,c,e,p知二 求二2. “回归定义” 是一种重要的解题策略。如:(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。3. 直线与圆锥曲线的位置关系(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是、.应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)常见方法:联立直线与圆锥曲线方程,利用韦达定理等;点差法(主要适用中点问题,设而不求,注意需检验,化简依据:)(2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在) 直线具有斜率,两个交点坐标分别为 直线斜率不存在,则.(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。考查三个方面:A 存在性(相交);B 中点;C 垂直()注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法.3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等)(4)求曲线轨迹常见做法:定义法、直接法(步骤:建设现(限)代化)、代入法(利用动点与已知轨迹上动点之间的关系)、点差法(适用求弦中点轨迹)、参数法、交轨法等。例1.已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是(答:C);A B C D例2已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且,求该双曲线的标准方程(答:)例3 已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若由焦点到直线的距离为3.(1)求椭圆分方程;(2)设椭圆与直线相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围。(答:)例4过点A(2,1)的直线与双曲线相交于两点P1、P2,求线段P1P2中点的轨迹方程。第三章 空间向量与立体几何1. 空间向量及其运算 , 共线向量定理: 共面向量定理:;四点共面 空间向量基本定理 (不共面的三个向量构成一组基 底,任意两个向量都共面)2. 平行:(直线的方向向量,平面的法向量)(是a,b的方向向量,是平面的法向量)线线平行:线面平行: 或 , 或 是内不共线向量)面面平行:3. 垂直线线垂直:线面垂直: 或 是内不共线向量)面面垂直:4. 夹角问题线线角 (注意异面直线夹角范围)线面角 二面角 (一般步骤求平面的法向量;计算法向量夹角;回答二面角(空间想象二面角为锐角还是钝角或借助于法向量的方向),只需说明二面角大小,无需说明理由)5. 距离问题(一般是求点面距离,线面距离,面面距离转化为点到面的距离)P到平面的距离 (其中是平面内任一点,为平面的法向量)6. 立体几何解题一般步骤坐标法:建系(选择两两垂直的直线,借助于已有的垂直关系构造);写点坐标;写向量的坐标;向量运算;将向量形式的结果转化为最终结果。基底法:选择一组基底(一般是共起点的三个向量);将向量用基底表示;向量运算;将向量形式的结果转化为最终结果。几何法:作、证、求异面直线夹角平移直线(借助中位线平行四边形等平行线);线面角找准面的垂线,借助直角三角形的知识解决;二面角定义法作二面角,三垂线定理作二面角;作交线的垂面.选修2-2第一章 导数及其应用1. 平均变化率 2. 导数(或瞬时变化率) 导函数(导数): 3. 导数的几何意义:函数yf(x)在点x0处的导数(x0)就是曲线yf(x)在点(x0,f(x0)处的切线的斜率,即k(x0)应用:求切线方程,分清所给点是否为切点4. 导数的运算:(1)几种常见函数的导数:(C)0(C为常数); ()(x0,); (sinx)cosx;(cosx)sinx; (ex)ex; (ax)axlna(a0,且a1); (a0,且a1)(2)导数的运算法则:u(x)v(x)u(x)v(x); u(x)v(x)u(x)v(x)u(x)v(x);.5. 设函数在点处有导数,函数在点的对应点处有导数,则复合函数在点处也有导数,且 或。复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的选取,以及区间的分割.微积分基本定理.物理上的应用:汽车行驶路程、位移;变力做功问题。7. 函数的单调性(1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数;(2)如果在某区间内恒有,则为常数。反之,若已知可导函数在某个区间上单调递增,则,且不恒为零;可导函数在某个区间上单调递减,则,且不恒为零.求单调性的步骤: 确定函数的定义域(不可或缺,否则易致错); 解不等式; 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”隔开,不能用“”连结。8. 极值与最值对于可导函数,在处取得极值,则.最值定理:连续函数在闭区间上一定有最大最小值.若在开区间有唯一的极值点,则是最值点。求极值步骤: 确定函数的定义域(不可或缺,否则易致错); 解不等式; 检验的根的两侧的符号(一般通过列表),判断极大值,极小值,还是非极值点.求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某就是最大或者最小。9. 恒成立问题 “”和“”,注意参数的取值中“=”能否取到。例1 ,过的切线方程为 例2 设函数在处取得极值。(1)求的值;(2)若对于任意的,都有成立,求c的取值范围。(答:(1)a=-3,b=4;(2))例3 设函数 (1)求函数的单调区间、极值.(2)若当时,恒有,试确定a的取值范围.(答:(1)在(a,3a)上单调递增,在(-,a)和(3a,+)上单调递减;时,时, (2)a的取值范围是)第二章 推理与证明1. 分清概念:合情推理与演绎推理 2. 综合法 分析法的步骤规范3. 反证法 步骤:提出反设;推出矛盾 ;肯定结论 4. 数学归纳法 步骤规范:(1)归纳奠基;(2)递推步骤(最后一定说明当n=k+1时,结论成立,根据(1)(2),结论对于(或者其他)成立,必不可少)例1 用综合法和分析证明 例2 已知例3 ,求的值,由此猜想的通项公式,并证明。(答:)第三章 数系的扩充与复数的引入1. 复数的概念 三种表示形式:代数形式:,复平面内点Z(a,b),向量.2. 区分实数,虚数,纯虚数,复数3. 复数的四则运算及其几何意义4. 复数的模例1 ()的充要条件是_例2 设复数满足条件那么的最大值是( )(A)3 (B)4 (C) (D)例3 实数为何值时,复数(1)为实数;(2)为虚数;(3)为纯虚数;(4)对应点在第二象限.例4已知为实数(1)若,求;(2)若,求,的值数学选修23第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+MN种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要分成N个步骤,做第一 步有m1种不同的方法,做第二步有M2不同的方法,做第N步有MN不同的方法.那么完成这件事共有 N=M1M2.MN 种不同的方法。3、排列:从n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列4、排列数: 5、组合:从n个不同的元素中任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。6、组合数: 7、二项式定理:8、二项式通项公式第二章 随机变量及其分布1、 随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的 不同而变化,那么这样的变量叫做随机变量 随机变量常用大写字母X、Y等或希腊字母 、等表示。2、 离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按 一定次序一一列出,这样的随机变量叫做离散型随机变量3、3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,. ,xi ,.,xnX取每一个值 xi(i=1,2,.)的概率P(=xi)Pi,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质 pi0, i =1,2, ; p1 + p2 +pn= 15、二点分布:如果随机变量X的分布列为:其中0p3.841时,X与Y有95%可能性有关;K26.635时X与Y有99%可能性有关回归分析 回归直线方程 其中, 数学选修4-4极坐标1伸缩变换:设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2.极坐标系的概念:在平面内取一个定点,叫做极点;自极点引一条射线叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。3点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为. 极坐标与表示同一个点。极点的坐标为.4.若,则,规定点与点关于极点对称,即与表示同一点。如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的。 5极坐标与直角坐标的互化:6。圆的极坐标方程:在极坐标系中,以极点为圆心,为半径的圆的极坐标方程是 ; 在极坐标系中,以 为圆心, 为半径的圆的极坐标方程是 ;在极坐标系中,以 为圆心,为半径的圆的极坐标方程是;7.在极坐标系中,表示以极点为起点的一条射线;表示过极点的一条直线.在极坐标系中,过点,且垂直于极轴的直线l的极坐标方程是.参数方程1.参数方程的概念

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论