生活中的博弈论word版.doc_第1页
生活中的博弈论word版.doc_第2页
生活中的博弈论word版.doc_第3页
生活中的博弈论word版.doc_第4页
生活中的博弈论word版.doc_第5页
已阅读5页,还剩155页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生活中的博弈论序:大博弈的思维观对于许多非数学专业和经济学专业人士来说,博弈论应该是一个极为陌生的概念。但在国外,博弈论作为现代经济学的前沿领域,已成为占据主流的基本分析工具之一。1994年诺贝尔经济学奖即授予三位博弈论专家,1996年诺贝尔经济学奖又同样授予两位与博弈论一脉相承的信息经济学开拓者。在经济学史上,曾经发生过三次重大的“革命”,分别是“边际分析革命”、“凯恩斯革命”与“博弈论革命”。博弈论与信息经济学的产生与发展引发了一场深刻的经济学革命,因为它代表着一种新概念、新方法论、新分析方法和一种全新的思想。经济学家凯恩斯1936年在就业利息与货币通论中远见卓识地写过这样一段深刻的话,“经济学家和政治哲学家的思想,不管是正确的还是错误的,其力量之大,往往超出常人意料。事实上,统治这个世界的就只是这些思想。许多实践家自以为绝不受任何知识的影响,却往往当上了一些已故经济学家的奴隶。执政的狂人,自称听到了上帝的指示,实际上却是从若干年前一些学术界劣等思想家那儿拾取了一些怪诞的想法比起思想的逐渐侵蚀力来,既得利益的势力被过分夸大了。”然而,博弈的技术分析有着严格的前提条件,逻辑严密,思路清晰。遗憾的是,这种技术分析的应用范围却是非常地狭窄。由此可见,博弈论的思想比任何技术性的分析都要重要。实际上,博弈之道是古已有之,但博弈思想的系统化、数学化却是近几十年发展起来的。正是因为博弈科学是一门新学科,我国管理界、经济界对博弈论与信息经济学的研究还是停留在引进介绍层面上,他们发表的成果大多堆砌庞杂的数学算法与令人眩目的数学模型。虽然博弈论与信息经济学在中国已是一门科学,但却逐渐变成阳春白雪或弃之不用或被滥用到极至的一门学问。博弈论与信息经济学不仅仅能在学术领域中光彩夺目,在其它领域如军事、管理、体育、政治、公关、个人生活中同样能得到充分利用,甚至在生物学中都可以觅其踪迹。在普通的企业管理中,经营者要熟练地掌握管理之术,必须能够自动自发并自觉地运用博弈论与信息经济学。在日常生活中,人们可以凭借博弈论与信息经济学的思想方法来分析进而解决实际问题。正是因为如此,诺贝尔经济学奖获得者保罗萨缪尔逊(paul samuelson)说:“要想在现代社会做一个有文化的人,你必须对博弈论有一个大致了解。”所谓“大博弈的思维观”正是表达了这层含义,人们身边无处不在的博弈哲学,无论是直接感受到或是从未接触过的社会、政治、法律、军事、经济、管理、自然、历史等现象。笔者试图在这本小册子中用最浅显的语言描述博弈论与信息经济学的大概思路方法,能用语言可以描述的就尽量少用或不用数学。因此笔者未对博弈论与信息经济学作数学化、系统的证明与阐述,只是采用独立成篇的小文章来讲解这个学科的基本知识。但也只有这样,才能够使似乎高深的博弈论与信息经济学思想很轻松地为普通读者所掌握,并能够让读者应用其思想方法来分析甚至是解决身边的诸多实际问题。就在本书即将付梓之前,令笔者甚感欣慰的是,2005年诺贝尔经济学奖由拥有以色列和美国双重国籍的经济学家罗伯特奥曼和美国经济学家托马斯谢林分享。两位经济学家获得诺贝尔经济学奖是因为“他们通过对博弈论的分析加深了我们对冲突与合作的理解”。(瑞典皇家科学院评语)最后,笔者还要感谢黑龙江的吴学秋教授,他仔细批阅本书的初稿,并提供了大量的意见与建议。同时,还非常感谢客户服务管理(中国)有限公司董事、总经理、营销管理专家王正党先生、前托普集团托普大学培训学院副院长、现任职某大学的杨志宏先生、前托普集团培训学院副院长、前马来西亚东南集团副总、著名策划专家彭小利先生、著名管理专家、策划专家铂策划创始人郭林先生、著名经济学家、管理专家刘正山博士、著名经济学家、北京大学政府管理学院mpa教育小组组长余斌教授、当代中国出版社乔平先生、青年政治学院的叶楚华教授、安徽工业大学管理科学与工程学院院长汪家常教授对笔者的关心与爱护。同时还要感谢中国计算机世界出版服务公司的编辑,给本书提出了许多宝贵意见与建议。还有其他很多热心的朋友,笔者限于篇幅无法一一列出,只能在此深表感谢!本书获得安徽省教育厅人文社科基金项目计划,项目编号2006sk164。由于笔者本人学识有限,对博弈论与信息经济学的理解与研究尚不深刻,错误在所难免,敬请博弈论与信息经济学的方家高人指点,以免贻误广大读者。本书有1/3的内容由江雨燕副教授编写,主要内容由余治国统筹编写,一切错误由主要编写人余治国负责。余治国-美丽心灵的博弈解读-美国环球公司(universal pictures,usa)2001年出品的电影美丽心灵(a beautiful mind)可谓家喻户晓。该片一举囊括了第59届金球奖5项大奖,并荣获2002年第74届奥斯卡奖4项大奖。影片本身与银幕背后的人物原型,都深深震撼了全世界人们的心灵。美丽心灵艺术地再现了数学天才、1994年诺贝尔经济学奖得主之一、罹患妄想型精神分裂症30多年又奇迹般恢复正常的约翰纳什(john nash)传奇般的人生经历。在一般的纪实性电影中,演员形象总是比真实生活中的原型要更具有动人风采。然而,让人难以置信的是,现实的纳什无论容貌风度都比男主角奥斯卡影帝罗素克洛(crowe russell)略胜一筹。正是这个曾如希腊古神一般英俊潇洒却又古怪精灵的数学与经济学的双料天才纳什,其早年在博弈理论方面的巨大贡献一直改变着我们的生活。然而,美丽心灵却又如实地反映出纳什喜悲交加的一生:纳什在数学领域工作,从早年开始就非常优异,1958年他被美国财富(fortune)杂志评为新一代天才数学家中最杰出的人物。就在纳什春风得意、事业将达到顶峰时,却突然遭受命运无情的重重一击,从云端坠入地狱:30岁的纳什患上了严重的精神分裂症。天才的他一生为精神分裂症所困扰,并在私生活上毫不检点。纳什青年时代曾与一位大他5岁的姑娘交往,两人还有个私生子,纳什在精神分裂症发作之前一直与她保持着若即若离的暧昧关系。他的父母4年之后发现此事,不久后纳什父亲去世,不知是否与这个打击有关。父亲去世之后,纳什与麻省理工学院(mit)年轻美丽的女学生爱莉西娅(alicia)结婚,此后40多年患难与共的爱情和亲情中可以见证这是他的个人生活中最完美、最幸运的时光。就在爱莉西娅身怀有孕,正待分娩的同年,纳什的精神状况却日益恶化。他的举止越来越古怪,正一步步走向心智狂乱。他麻烦缠身,有一次竟然因为在男洗手间“不恰当地”暴露了自己的身体被逮捕。万般无奈之下,爱莉西娅于1962年和纳什离婚。但是她对他的忠诚爱情并没有就此消失。1970年,纳什的母亲去世,而他的姐姐无法负担他,就在纳什孤苦无依、就要流落街头的时候,善良的爱莉西娅接他来与自己同住。她不仅在起居上关心他,而且以女性特有的细心敏感照料着他的情感生活。她体贴他不肯去医院封闭治疗的愿望,把家搬到远离尘世喧嚣的普林斯顿,希望宁静熟悉的学术氛围有助于稳定纳什的情绪。爱莉西娅不能眼睁睁看着这个天赋异禀的天才就这样消沉。作为妻子的爱莉西娅用爱去挽救丈夫,尽管这对幸福的人在恋爱时的卿卿我我此时已荡然无存。纳什被妻子的这种无可动摇的爱和坚定的信念所感染,决心同疾病抗争到底。在深爱他的妻子爱莉西娅的帮助下,在他自己的天才与狂乱中,纳什陷入了一种狂热的智力上的极高的境界。这改变了一切。经过很多年的艰苦努力,纳什最终走出阴霾,理性为他带来了心灵的平和。终于在1994年纳什凭借他在现代博弈理论上的卓越贡献,获得科学界的最高荣誉诺贝尔奖。人们在观看影片的时候,不禁会想,天才纳什在博弈上的贡献主要是什么?为什么好莱坞会为这样一个充满传奇色彩的博弈论大师拍摄出这样纪实性的影片呢?这部片子为什么又是如此地震撼了全球亿万观众的心灵?可能很多人对博弈论的兴趣正是美丽心灵这部传世之作所引发出的。众所周知,现代博弈理论由匈牙利大数学家冯诺伊曼(john von neumann)于20世纪20年代开始创立,1944年他与经济学家奥斯卡摩根斯特恩(oskar morgenstern)合作出版的巨著博弈论与经济行为,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈,比如两个人打乒乓球,一方赢则另一方必输,两个人获利的总和为零。在这里能否且如何找到一个理论上的“解”或“平衡”,也就是对参与双方来说都最“合理”或者是最优的具体策略?怎么样的策略才是“合理”?应用传统决策论中的“最小最大”准则,即博弈的每一方都假设对方的所有策略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解”。用通俗的话说,这个著名的最小最大定理所体现的基本思想是“抱最好的希望,做最坏的打算”。虽然二人零和博弈的解决具有重大的意义,但作为一个理论来说,它应用于实践的范围是极其有限的。二人零和博弈主要的局限性:一是在各种社会活动中,常常有多方参与而不是只有两方;二是参与各方相互作用的结果并不一定有人得利就有人失利,整个群体可能具有大于零或小于零的净获利。1949年,21岁的纳什写下一篇著名的论文多人博弈的均衡点,提出了纳什均衡的概念和解法。这是整个现代非合作型博弈论中最重要的思想之一,也奠定了44年后他获得诺贝尔奖的基础。1950年纳什曾带着他的想法去会见当时名满天下的冯诺依曼(博弈论创始人之一,天才数学家),遭到断然否定,在此之前他还受到爱因斯坦的冷遇。但是在普林斯顿大学宽松的科学环境下,他的论文仍然得到发表并引起了轰动。对于多人参与、非零和的博弈问题,在纳什之前,无人知道如何求解,或者说怎样找到类似于最小最大解那样的“平衡”。而找不到解,下面的研究当然无法进行,更谈不上指导实践了。纳什对博弈论的巨大贡献,正在于他天才性地提出了“纳什均衡”的基本概念,为更加普遍广泛的博弈问题找到了解。1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都是沿着这条主线展开的。纳什的好友,普林斯顿大学经济学教授迪克西特曾说:“如果每次有人说起或写下纳什均衡这几个字,纳什都能拿到一块钱的话,那么他现在会是个大富翁了!”诺伊曼在博弈论与经济行为一书中还建立了合作型博弈论的基本模型,但是对于其中双向协商问题,也就是参与者如何“讨价还价”的问题,没有给出一个确定的解。纳什对这一领域同样作出了卓越贡献,他不仅提出了讨价还价问题的公理化解法,还在理论上利用这个解法良好的预测性进一步提出纳什方案:将合作型博弈中的协商转化为一个更广泛的非合作型博弈的一个步骤协商的目的最终仍是最大化自己的利益。此外,在测试博弈论的行为实验学上,纳什也是一名先驱。他曾展开讨价还价和联盟形成的实验,并曾敏锐地指出,在其他实验者的囚徒困境实验里,反复让一对参与者重复实验实际上将单步策略问题转化成了一个大的多步策略问题。这一思想初次提示了在重复博弈理论中串谋的可能性,这一发现在经济和政治领域起到重要的作用。在美丽心灵中有这样的情节:1994年美国政府向商家拍卖大部份电磁波谱。这一多回合拍卖由很多博弈论专家精心设计,设计的目的就是最大化政府收益和各商家利用率。这个设计取得极大的成功。政府获得超过100亿美元的收入,各频率的波谱也都找到了满意的归宿。与此相对应的是,新西兰一个类似的拍卖会惨遭失败。因为他们没有经过博弈理论来设计拍卖规则。结果,政府只获得预计收入的15,而被拍卖的频率也未能物尽其用。譬如因为无人竞争,一个大学生只花1美元就买到了一个电视台许可证。正是因为博弈论对现代经济生活具有如此重大的冲击和影响,1994年瑞典皇家学院宣布该年全世界科学家的最高荣誉诺贝尔奖之经济学奖颁发给包括纳什在内的三位数学家,以表彰他们对非合作型博弈论的开拓性分析。也许正如罗素克洛在领奖时对美丽心灵的评价一样,纳什与他的博弈论对我们,“能帮助我们敞开心灵,给予我们信念,生活中真地会有奇迹发生。”-无处不在的博弈-日常生活中的一切,均可从博弈得到解释,大到美日贸易战,小到今天早上你突然生病。可能读者会认为,贸易争端用博弈论来分析是可以的,但对自己生病也可以用博弈论来理解就有点不可思议,因为自己就一个人,和谁进行游戏?实际上,并非只有一个人,还有一个叫做“自然”(nature)的参与者。“自然”可以理解为无所不能的上帝,上帝现在有两种策略,让人生病或不生病。人一旦生病,就不得不根据生病的信息判断上帝的策略,然后采取对应的策略。上帝采取让人生病的策略,人就采取吃药的策略来对付;上帝采取不让人生病的策略,人就采取不予理睬的策略。这正是一场人和上帝进行博弈的游戏。“自然”是研究单人博弈的重要假定。再比如一个农夫种庄稼也是同自然进行博弈的一个过程。自然的策略可以是:天旱、多雨、风调雨顺。农夫对应的策略分别是:防旱、防涝、放心地休息。当然,“自然”究竟采用哪种策略并不确定,于是农夫只有根据经验判断或气象预报来确定自己的行动。如果估计今年的旱情较重,就可早做防旱准备;如果估计水情严重,就早做防涝准备;如果估计是风调雨顺,农夫就可以悠哉游哉了。生活中更多的游戏不是单人博弈,而是双人或多人的博弈。比如,某一天你觉得应该是你太太的生日,但又不能肯定:如果是太太的生日的话,你可以送一束花,太太会特别高兴;你不送花,太太会埋怨你忘了她的生日;如果不是太太的生日的话,你可以送太太一束花,太太感到意外的惊喜;你不送花,结果生活同往常一样。在这个博弈里,我们看到,“自然”可以有两种策略:确定今天是太太的生日或确定今天不是太太的生日,但不论“自然”采取何种策略,你的最好行动都是买花。夫妻吵架也是一场博弈。夫妻双方都有两种策略,强硬或软弱。博弈的可能结果有四种组合:夫强硬妻强硬、夫强硬妻软弱、夫软弱妻强硬、夫软弱妻软弱。根据生活的实际观察,夫软弱妻软弱是婚姻最稳定的一种,因为互相都不愿让对方受到伤害或感到难过,常常情愿自己让步。动物学的研究有相同的结论,性格温顺的雄鸟和雌鸟更能和睦相处,寿命也更长。夫强硬妻强硬是婚姻最不稳定的一种,大多数结局是负气离婚。夫强硬妻软弱和妻强硬夫软弱是最常见的一种,许多夫妻吵架都是这样,最后终归是一方让步,不是丈夫撤退到院子里点根烟,就是妻子避让到卧室里号啕大哭。在竞争激烈的商业界,博弈更为常见。比如两个空调厂家之间的价格战,双方都要判断对方是否降价来决定自己是否降价,显而易见,厂家之间的博弈目标就是尽可能获得最大的市场份额,赚取最多的收益。事实上,这种有利益(或效用)的争夺正是博弈的目的,也是形成博弈的基础。经济学的最基本的假设就是经济人或理性人的目的就是为了效用最大化,参与博弈的博弈者正是为了自身效用的最大化而互相争斗。参与博弈的各方形成相互竞争相互对抗的关系,以争得效用的多少决定胜负,一定的外部条件又决定了竞争和对抗的具体形式,这就形成了博弈。如象棋对局的参与者是以将对方的军为目标,战争的目的是为了胜利,古罗马竞技场中角斗士在争夺两人中仅有的一个生存权,企业经营的目的是为了生存发展,而股市中人们所争的很实在,就是金钱。从经济学角度来看,有一种资源为人们所需要,而资源的总量具是稀缺的或是有限的,这时就会发生竞争,竞争需要有一个具体形式把大家拉在一起,一旦找到了这种形式就形成了博弈,竞争各方之间就会走到一起开始一场博弈。孙子兵法上说:“知己知彼,百战百胜。”可见竞争对抗还有博弈各方拥有信息的特征。比如上一个例子中,博弈双方都明白对方的策略,从博弈理论来说,更拗口的说法是一方知道另一方知道自己的策略,反之另一方亦然,这种句法我们可以一直这么用下去,一直用到打“”,而这正是博弈双方所掌握的公共信息。因此我们可以了解到,形成一个博弈有4个要素:1博弈要有2个或2个以上的参与者(player)。在博弈中存在一个必须的因素,那就是不是一个人在一个毫无干扰的真空里做出决策。比如一个单身汉,就不可能存在夫妻吵架的博弈,更不存在是否送花讨太太欢心的困扰。从经济学的角度来看,如果是一个人做决策而不受到他人干扰的话,那就是一个传统经济学或管理学中最经常研究的最优化问题,也就是一个人或一个企业在一个既定的局面或情况下如何决策的问题。最简单的一个最优化的例子就是,吸烟伤肺,不吸烟却又伤心,烟民是选择抽烟还是不抽烟,这就需要进行权衡(tradeoff)。如果这个烟民非单身贵族,而是有妻子或女友,这种情况下就很有可能形成一个博弈。这也就是,博弈者的身边充斥着具有主观能动性的决策者,他们的选择与其它博弈者的选择相互作用、相互影响。这种互动关系自然会对博弈各方的思维和行动产生重要的影响,有时甚至直接影响着其他参与者的决策结果。在冯诺依曼(von neumann)的博弈论奠基之作博弈论与经济行为一书中举过这样一个经典的例子。在鲁滨逊漂流记中,与世隔绝的“鲁滨逊”(robinson crusoe)一个人组成一个独立的经济系统,有中学数学水平的人都能够清楚,这只是一个普通的求解最大值的问题。因为鲁滨逊面对的是一些死的数据,而不是有主观意愿的人。一旦“星期五”(鲁滨逊漂流记中鲁滨逊的黑人仆人)加入这个系统,这个经济系统就形成了一个博弈问题。2博弈要有参与各方争夺的资源或收益(resources或payoff)。资源指的不仅仅是自然资源,如矿山、石油、土地、水资源等,还包括了各种社会资源,如人脉、信誉、学历、职位等。如果这些资源是无限供给的,那么我们也不需要为共产主义而奋斗了,因为一步就可以迈入“货恶其弃于地也,不必藏于已,力恶其不出于身也,不必为已。”“大道之行也,天下为公。”的大同社会。当然,不可否认是,一方面,博弈者之间会发生冲突;另一方面,他们当中也包含着合作的潜力。值得强调的是,资源是有主观性的。人们之所以会参与博弈是受到利益的吸引,预期将来所获得利益的大小直接影响到竞争博弈的吸引力和参与者的关注程度。经济学的效用理论可以用来解释这个问题,凡是自己主观需要的就是资源,反之亦然。比如,“孩子总是自己的好,妻子总是别人的好”:自己的孩子在眼里是无价之宝,而在别人面前相对是无价值的;即使是众人公认的美妻娇眷也会产生审美疲劳,资源的价值不断下降,这正是效用递减规律起了作用。最极端的例子大概就是明代小说镜花缘中所描绘的君子国,人人礼让使得客观的资源就变得毫无价值,自然就不存在竞争与博弈。3参与者有自己能够选择的策略(strategy)。所谓策略,就是“计利以听,乃为之势,以佐其外。势者,因利而制权也。”这指的是直接实用的针对某一个具体问题所采取的应对方式。通俗地说,策略就是计策,是博弈参与者所能够选择的手段方法。一般日常生活中,策略选择仅是解决问题的方法,并不牵涉到分析关键因素、确定局势特征这些理论化的内容。而博弈论中的策略选择,是先对局势和整体状况进行分析,确定局势特征,找出其中关键因素,然后在最重要的目标上进行策略选择。由此可见,博弈对局中的策略是可以牵一发而动全身的,这直接对整个局势造成重大影响。4参与者拥有一定量的信息(information)。比如在“合纵连横”的故事中,秦国与六国之间所拥有的信息就是完全的。但有些时候,信息并不是完全的,俗话说“天有不测风云”,比如今天是阴云密布、狂风大作,气象台预报明天是“阴转小雨”,明天出门上班到底要不要带伞呢?这种情况的信息是不完全的,人们决策的信息条件是不确定。当然从情理上说,在实际生活中一般是要带伞以防不测。通俗地说,博弈就是个人或组织在一定的环境条件与既定的规则下,同时或先后,仅仅一次或是进行多次地选择策略并实施,从而得到某种结果的过程。我们生活在这个世界上,就不可避免地要与他人打交道,这是一个利益交换的过程,也就不可避免地要面对各种矛盾和冲突。所谓博弈论听似拗牙聱齿,看似深不可测,但其思想极易理解。简单说来博弈论就是研究人们如何进行决策,以及这种决策如何达到均衡的问题。每个博弈者在决定采取何种行动时,不但要根据自身的利益和目的行事,还必须考虑到他的决策行为对其他人的可能影响,以及其他人的反应行为的可能后果,通过选择最佳行动计划,来寻求收益或效用的最大化。-博弈是一种竞合游戏-2000多年前,雄才大略的秦始皇第一次统一了中国大地,并创建了当时世界上最庞大的帝国,得以名垂青史。从当时的历史条件来看,秦国虽然在商鞅变法之后实力大增,但其经济、政治、军事实力是远远不能与六国总和相匹敌的。这种情况下,六国与秦国的形势就产生了两种针锋相对的可能:其一,六国采用“合纵”政策对抗秦国,也就是各国缔结军事盟约,共同抵御秦国的侵略,秦国若对任一国家发动侵略,其它国家必须无条件出兵营救;其二,六国采用“连横”政策与秦国妥协,也就是各国都与秦国签订友好互助条约,保持双边和平关系。当时七国之中,只有齐国实力比秦国稍逊一筹,成为六国军事同盟的核心。一旦齐国放弃“合纵”政策,六国的军事同盟就土崩瓦解。真实的历史也证明了这一点,秦国对六国联盟的破坏正是从齐国开始的。在这种情况下,秦国与齐国都有两种战略政策可以选择,那就是“合纵”与“连横”。秦国如果默许六国“合纵”,齐国采用“合纵”政策,结果是秦国势力扩张被遏制,而齐国成为六国领袖,势力得以扩张。秦国采取“连横”政策,齐国仍然采取“合纵”政策,结果是秦国与六国处于对峙状态。秦国默许六国“合纵”,齐国却采用“连横”政策与秦国示好,结果是秦国没有吞并六国的野心自然无法一统天下,齐国的势力也没有得以扩张。而历史的真相是,秦国采取“连横”政策,齐国默许秦国的“连横”政策并与秦国建立友好外交关系,齐国最终被灭,千古一帝秦始皇得以名扬千秋。“博弈论”的英文是“game theory”,实际上game的本意是游戏,博弈论直接翻译成中文最贴切的直译是“游戏理论”。更准确点说,是一种竞合的智力游戏。从秦始皇的故事中,我们看到博弈中包含了竞争冲突与合作两种截然不同的策略。所谓竞合,就是竞争合作的简写,一个博弈,并不仅仅是竞争,实际上竞争中包含着潜在合作的种子,合作中包含着潜在竞争的种子。合作博弈并不是指合作各方具有合作的意向或态度,而是指在博弈中有一些对博弈各方有约束力的协议或契约,或者说是博弈各方不能公然“串通”或“共谋”。合作博弈最典型的例子就是石油输出国组织欧佩克(organization of petroleum exporting countries,简称opec)。1960年9月,伊朗、伊拉克、科威特、沙特阿拉伯和委内瑞拉的代表在巴格达开会,决定联合起来共同对付西方石油公司,维护石油收入。欧佩克在这个时候应运而生。欧佩克现在已发展成为亚洲、非洲和拉丁美洲一些主要石油生产国的国际性石油组织。它统一协调各成员国的石油政策,并以石油生产配额制的手段来维护它们各自和共同的利益,把国际石油价格稳定在公平合理的水平上。比如有些时候为防止石油价格飚升,欧佩克可依据市场形势增加其石油产量;为阻止石油价格下滑,欧佩克则可依据市场形势减少其石油产量。对于个人来说,从博弈论的角度来看,在人生、事业一筹莫展的时候,如何能寻找到一个快速突破困境的办法?首先要寻找一个合理的策略,而这个合理的策略,势必要建立在一个牢固的基点之上,才能切实可行。如果在困境之中,有人与你因为同样的原因无法抽身,那么是否能够和这个人一起摆脱不利的处境,在合作的基础上走向双赢呢?红楼梦里面形容四大家族的时候,用过一个评语,叫做“一荣俱荣,一损皆损”,就是因为这四个家族你中有我,我中有你,相互之间有利益的合作,也有亲缘关系,所以结成一个牢固的联盟。那么,如果两个同时处在困境中的人,也有这种利益+亲缘的双重关系,他们合作起来就会更加容易,而且形成的合力就会更大。正所谓“二人同心,其利断金”,而要做到“同心”,只有利益上的合作是不够的,还需要一种近乎亲情的亲缘关系。显然,这是可遇而不可求的,因为亲缘关系不是能够随便形成的。智力游戏与博弈相近似的本质是:在确定游戏规则的约束下,游戏参与者决策、行动的过程。各种智力游戏实质上就是一个社会的经济、管理、军事、政治等现象抽象出来的缩微模拟模型。在这个意义上不妨说,博弈论就是研究怎么玩好游戏的理论。游戏是一种抽象。面对复杂现象时,人们经常会“只见树木不见森林”,无法抓住某种现象的关键所在。而在游戏中,可以通过抽象出现实生活中的要点,并将干扰因素减至最低,从而轻松地分析问题并找到合理可行的解决方法。中国最古老的围棋智力游戏,其最初的功能形态就是模拟战争。围棋包含最多的就是博弈的内涵,特别是战争中的博弈内涵,如围而歼之,生死存亡为先,争地夺利为上。围棋以获得最大的利益为胜,抽象出战争的本质和目的,来研究战争的规律。围棋游戏的规则极其简单,不过是两气生,一气死,附加帖目、打劫等辅助规则,最终以所占地盘大小定胜负。然而,其作为一项智力游戏,围棋与战争在很多方面都相通。围棋棋手在小小棋盘上较量,就是战争、战场、战斗在棋盘上的演绎。战争理念和战争指导思想是“基于毁伤”,以破坏、消耗、摧毁敌方为上。现代西方国家提出“基于效果”的作战思想,美国人将这一战争理念上的革命称为新的战争哲学。基于效果就是,着眼于敌方整个作战系统的控制,使之丧失作战能力。美军在伊拉克发动“斩首行动”的前一天,还专门召开了推出基于效果作战理念的新闻发布会,接着就发动了进攻。围棋模拟出“基于效果”的战争理念,强调从全局上控制,而不是基于蝇头小利。即所有的作战方法都必须是有效的,着子要看在全局中是否有用、有效,而不再是基于棋理、棋道、棋风等虚幻的在形式。基于效果的思想就是赢棋第一,实事求是。比如韩国棋手李昌镐就是基于效果的典范。现在很多世界级公司都已经明白智力游戏的作用。比如著名的微软公司在招聘员工时出过非常“儿童化”的招聘考题,题目是这样的:“某合唱团的4名成员a、b、c、d往演出现场,他们途中要经过一座小桥。当他们赶到桥头时,天已经黑了,周围没有灯。他们只有一只手电筒。现在规定:一次最多只许两人一起过桥,过桥人手里必须有手电筒,而且手电筒不能用扔的方式传递。4个人的步行速度都不同,若两人同行,则以较慢者的速度为准。a需花1分钟过桥,b过桥需花2分钟,c需花5分钟过桥,d需花10分钟过桥。请问:他们能在17分钟内过桥吗?”这可不是微软公司的别出心裁,据说许多跻身世界500强的公司在招收新员工时,都要出类似的智力题。 智力游戏可以锻炼人的思维能力,培养人的思维方法。良好的思维方法能使我们从错综复杂的现象中找到事物的本质,从纷繁的因素中找到事物变化的主要原因,使事物呈现出条理性。思维方法是抽象的,它不像112那么简单,只有通过自己的想象,亲自动手操作,经历失败,才能逐步形成。思维科学化程度越高的人,工作中发现问题、解决问题的能力就越强。这一点已成为人们的共识。在许多智力游戏中,都存在这么一个共同的特点:就是参与者所选择的策略对于胜负有着举足轻重的影响。一个游戏的规则一旦定好之后,策略选择的好坏就成了游戏参加者所能自由运用的左右游戏结果的最关键因素。特别是在围棋、象棋之类参与者的初始条件完全相同的游戏中,策略选择就成了游戏结果的唯一决定因素。至于从围棋初段到九段之间的差别,从博弈论的角度去看,不过是他们策略选择技巧的高低不同而已。博弈论的策略思维是一种技巧。策略思维从一些基本技巧出发,考虑的是怎样将这些基本技巧最大限度地发挥出来。任何游戏都有自己的规则(rule of the game)。实际现实中的人类社会自然也是如此,这就是法律、道德和各种成文或不成文的规章制度和惯例等。当然,这些规则也不是一成不变的,它会随着情况的改变和人们的要求不断修正,但是只要规则存在,这个规则就确定了人们行为的前提条件。因此博弈与游戏都有一个重要的共同特征:那就是这些规则规定游戏参加者可以做什么,不可以做什么,按照什么次序去做,什么时候结束游戏,一旦参与者犯规将受到怎样的处罚等。游戏者的策略有相互依存的关系。每一个游戏者从游戏所得结果的好坏不仅取决于自身的策略选择,同时也取决于其它参加者的策略选择。有时甚至一个坏的策略会给选它的一方带来并不坏的结果,原因是其它方选择了更坏的利他而不利己的策略。这一点也是游戏与博弈重要的相似之处。-从围棋定式谈纳什均衡-我们已经知道,博弈论的基本前提是,某人或某物的行为效果如何,有赖于他人或他物的行为。由于世间的事物很少有不依赖于其他事物而存在的。非合作博弈强调利益的冲突,即非合作甚至对抗状态。比如,“零和博弈”就是典型的非合作博弈,它是指博弈各方的所得之和为零,在特殊情况下如两人博弈时,一方所得与另一方所失相等。从严格的数学角度来看,围棋1919的361个交叉点就是围棋对弈者所得的总和,因此围棋棋手非输即赢,可见围棋明显是数学意义上的严格的零和博弈。世事如棋局,而棋局是可以用博弈思维加以概括的。比如过分的“骗着”,“本手”与“缓着”之间,一般都会选择本手,着法过分如不遇反击,可能占到便宜,如遇反击则可能亏损,因此如果棋力相当,则应考虑到对手的反击手段。对手也同样考虑到在追求利益中不可能占尽便宜。这就导致双方都能接受方案。围棋定式从策略层面看,如一方的策略是抢占实地,另一方是获得外势,而结果相当,互有所得,双方就愿意那样下。抢占实地考虑现实利益,获得外势考虑将来发展,这便形成一个双方的“均衡”;另一方面,可以从具体行棋效果来看,如果一步棋能考虑到对手各种应手而依然成立,对手也运用同样法则找到应对,则可以说双方达成了“均衡”。在经济学中,均衡(equilibrium)意即相关量处于稳定值。均衡是在分析均衡价格与数量的决定与变动的状况。供需均衡时会达到供需相等,市场出清,也就是在其他条件不变下,会维持不变的状况。一物的供给量等于需求量的价格,就是其均衡价格,对应的数量就是均衡数量。这就是在供给线与需求线相交之处,也称为均衡点。比如在供需分析中,若某一商品的市场价格使得欲购买该商品的人均能买到,同时想卖的人均能将商品卖出去,此时该商品的供求达到了均衡。这个市场价格可称之为均衡价格,产量可称之为均衡产量。均衡分析是经济学中的重要方法。在谈纳什均衡之前,我们先来看这样一个例子。这个例子对大家所熟知的“囚徒困境”做了一些微小的修改,结果却是发生根本的变化。a和b是两个因盗窃而被抓的惯犯。警察局局长c正在调查该局管辖区域内的一宗悬而未决的银行抢劫案,并且他根据一系列的线索判定a和b是这桩案子的凶犯。因为该局管辖地区治安一向混乱不堪,c的上级对c非常恼火,直接威胁c,如果银行案破不了,就要撤销c局长的职位,给予降级惩罚。c在上级的压力下不得不耗费大量时间、精力提审a和b。为了能够让两个囚犯认罪,c想让a和b明白,假如只有他们其中的一人坦白认罪则这个人可能受到的最严厉的惩罚是什么,但向他们遵守承诺,若两个人都坦白,则会从轻发落。于是,这个警察局长c分别与a、b立下许诺:如果只有一个人坦白认罪,则认罪的一方会收到所有指控,会因抢劫银行而判无期徒刑,另一个人则不会再加刑罚。如果无人认罪,两个人都会因盗窃罪而判刑2年。如果两个人都坦白,则两个人都被判处有期徒刑5年。这样,警察局长c给a和b构造了一个博弈。不妨假设,a和b都是极其精明的会打小算盘的自私自利不讲“江湖义气”的人,同时a和b被分别审查不能够进行沟通。在这种情况下,a会在心里打起小算盘,他会想:如果选择坦白,那么b选择坦白时将判刑5年,b选择不坦白时将被判无期徒刑,因此选择坦白时最坏的打算就把牢底坐穿;若是选择不坦白,那么b选择坦白时将无罪释放获得自由,b选择不坦白时将判有期徒刑2年,因此选择不坦白时最坏的可能就是被囚禁5年。两害相权,取其轻。因此在这种情况下,a必然会选择不坦白,同样的道理,b也会选择不坦白。这个时候,博弈达到了这样一种局面,这种局面就是纳什均衡(nash equilibrium)。纳什均衡的思想其实并不复杂,在博弈达到纳什均衡时,局中的每一个博弈者都不可能因为单方面改变自己的策略而增加获益,于是各方为了自己利益的最大化而选择了某中最优策略,并与其他对手达成了某种暂时的平衡。这种平衡在外界环境没有变化的情况下,倘若有关各方坚持原有的利益最大化原则并理性面对现实,那么这种平衡状况就能够长期保持稳定。再简单一点说,一个策略组合中,所有的参与者面临这样的一种情况:当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略,他的收益将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。由此可见,纳什均衡是一稳定的博弈结果。打一个比方,如果把一个乒乓球,放到一个光滑的铁锅里,不论其初始位置在何处,最终乒乓球都会稳定地停留在锅底,这时的锅底就可称为是一个纳什均衡点。相反,如果锅是扣在地上的,那么一个乒乓球很难在锅底部位保持稳定,因为往任何方向的一点点移动,都会使球立刻离开锅底。这时的锅底部位就不是一个纳什均衡点了。博弈的结果并不都能成为均衡。博弈的均衡是稳定的,则必然可以预测。纳什均衡的另一层含义是:在对方策略确定的情况下,每个参与者的策略是最好的,此时没有人愿意先改变或主动改变自己的策略。在上面的“囚徒困境”变形的博弈中,a和b都不坦白就是一个纳什均衡,这对双方来说都是最优选择。同时在这个博弈中,其均衡对双方来说是全局最优的。当然博弈达到纳什均衡,并不一定是对参与者最有利的结果,更不意味着对整体而言是最有利的结果,比如“囚徒困境”的例子导致了整体的不利。围棋与这个博弈的例子是有所不同的。上面的这个例子是a和b双方没有信息交换下的博弈,这就是博弈论中的静态博弈概念。围棋则是对弈双方相继按照一先一后次序行动的博弈。对于一人一步的相继行动的博弈,每个参与者都必须向前展望或预期,估计对手的意图,从而倒后推理,决定自己这一步应该怎么走。这是一条线性的推理链:“假如我这么做,他就会那么做若是那样,我会这么反击”,后面的步骤依此类推。也就是说,你怎么走棋,完全取决于对手的上一招。这在博弈论上叫做“倒推法”。在动态博弈中,存在明显的马太效应,也就是说凡是拥有较少的,连他仅有的那一点点也夺过来;凡是多的,就加给他,让他更多。比如在围棋上,就有“一招不慎,满盘皆输”的谚语,当然我们也要应用马太效应原理,在获得优势的情况能够保持优势,扩大优势,直至最后成功。而在同时行动的静态博弈里,没有一个博弈者可以在自己行动之前得知另一个博弈者的整个计划。在这种情况下,互动推理不是通过观察对方的策略进行,而是必须通过看穿对手的策略才能展开。要想做到这一点,单单假设自己处于对手的位置会怎么做还不够。即便你那样做了,你只会发现,你的对手也在做同样的事情,即他也在假设自己处于你的位置会怎么做。因此,每一个人不得不同时担任两个角色,一个是自己,一个是对手,从而找出双方的最佳行动方式。与一条线性的推理链不同,这是一个循环,即“假如我认为对方认为我认为”。这样来看,定式是一系列纳什均衡的累计直至局部达到稳定的一种变化,直到一方认为可以根据形势选择任何变化或脱先而无局部受损之虞。由于定式是在大量实战基础上不断被验证并长期积累而成。因此在动态博弈中,纳什均衡的要义在于:即使在对抗条件下,双方可以通过向对方提出威胁和要求,找到双方能够接受的解决方案而不至于因为各自追求自我利益而无法达到妥协,甚至两败俱伤。稳定的均衡点建立在找到各自的“占优策略”(dominant strategy),即无论对方作何选择,这一策略始终应优于其它策略。-从爱情故事谈起:优势策略-“原地高天,堪叹古今情难尽;痴男怨女,可怜风月债难偿。”我们来先看欧亨利的小说麦吉的礼物描述的这样一个爱情故事。新婚不久的妻子和丈夫,很是穷困潦倒。除了妻子那一头美丽的金色长发,丈夫那一只祖传的金怀表,便再也没有什么东西可以让他们引以为傲了。虽然生活很累很苦,他们却彼此相爱至深。每个人关心对方都胜过关心自己。为了促进对方的利益,他们愿意奉献和牺牲自己的一切。话说明天就是圣诞节了,小两口都是身无余钱。为了让爱人过得好一点,每个人还是想悄悄准备一份礼物给对方。丈夫卖掉了心爱的怀表,买了一套漂亮发卡,去配妻子那一头金色长发。妻子剪掉心爱的长发,拿去卖钱,为丈夫的怀表买了表链和表袋。最后,到了交换礼物的时刻,他们无可奈何地发现,自己如此珍视的东西,对方已作为礼物的代价而出卖了。花了惨痛代价换回的东西,竟成了无用之物。出于无私爱心的利他主义行为,结果却使得双方的利益同时受损。欧亨利在小说中写道:“聪明的人,送礼自然也很聪明。大约都是用自己有余的物事,来交换送礼的好处。然而,我讲的这个平平淡淡的故事里,两个住公寓的傻孩子,却是笨到极点,彼此为了对方,白白牺牲了他们屋檐下最珍贵的财富。”从这段文字看,欧亨利似乎并不认为这小两口是理性的。且让我们暂时抛开爱情的温馨,单从利益的角度来解读。我们假定,他们每个人,有一个“毫不利己,专门利人”的偏好系统,毫不考虑自身利益,专门谋求别人的幸福。这样,个人选择付出还是不付出,只看对方能不能得益,与自己是否受损无关。以这样的偏好来衡量,最好的结果自然是自己付出而对方不付出,对方收益增大;次好的结果是大家都不付出,对方不得益也不牺牲;再次的结果是大家都付出;最坏的结果是别人付出而自己不付出,靠牺牲别人来使自己得益。我们不妨可用数字来代表个人对这四种结果的评价:第一种结果给3分,第二种结果给2分,第三种结果给1分,最后那种给0分。不难看出,无论对方选择付出,还是选择不付出,个人自己的最佳选择都是付出。然而这并不是对大家都有利的选择。事实上,大家都选择不付出,明显优于大家都选择付出的境况,这就达到了上文提到的纳什均衡。实际上,这里的例子有一个占优策略均衡。通俗地说,在占优策略均衡中,不论所有其他参与人选择什么策略,一个参与人的占优策略都是他的最优策略。显然,这一策略一定是所有其他参与人选择某一特定策略时该参与人的占优策略。因此,占优策略均衡一定是纳什均衡。在这个例子中,妻子选择不付出,也就是不剪掉金发对于妻子来说是一个优势策略,也就是说妻子不付出,丈夫不管选择什么策略,妻子所得的结果都好于丈夫。同理,丈夫不卖掉怀表对于丈夫来说也是一个优势策略。再举个常见的例子:一名篮球前锋和队友在篮下面对着对方的一个后卫时,形成了二打一的局面,该前锋可以选择直接投篮,也可以选择传球给队友,根据经验,传球过人的成功率更大,那么传球就是该前锋的优势策略。即某些时候它胜于其他策略,且任何时候都不会比其他策略差。如果一个球员具有这样一种策略,无论其他球员怎么做,这个策略都会高出一筹,那么这个球员就有一个优势策略。当然如果一个球员有这么一个优势策略,他的决策就会变得非常简单,只要直接采用该策略而完全不必考虑对手的应对策略。还有一个要注意的问题是,采用优势策略得到的最坏结果并不一定比采用另外一个策略得到的最佳结果要好,这是很多博弈论普及书中容易出错的一个问题。应该说,对局者采用优势策略在对方采取任何策略时,总能够显示出优势。比如就这个例子来说,就妻子来说,她采用不付出的策略,无论丈夫付出或不付出,妻子的不付出策略总是占有优势。丈夫的优势策略也是一样。但是,妻子选择不付出的最坏结果是1,选择付出的最好结果是3,很明显,妻子的优势策略得到的最坏结果并不比采用另外一个策略得到的最佳结果要高出一筹。反之,劣势策略则是指在博弈中,不论其他参与人采取什么策略,某一参与人可能采取的策略中,对自己严格不利的策略,劣势策略是我们在日常生活中不可以选择的行动。劣势策略是与优势策略相对应的概念,笔者这里就不多做介绍。-房地产开发博弈、警察捉小偷与混和策略-实际上,在每个参与人都有优势策略的情况下,优势策略均衡是非常合乎逻辑的。一个优势策略优于其他任何策略,同样,一个劣势策略则劣于其他任何策略。假如你有一个优势策略,你可以选择采用,并且知道你的对手若是有一个优势策略他也会照办;同样,假如你有一个劣势策略,你应该避免采用,并且知道你的对手若是有一个劣势策略他也会规避。但遗憾的是,并不是所有博弈都有优势策略,哪怕这个博弈只有两个参与者。实际上,优势策略只是博弈论的一种特例。虽然出现一个优势策略可以大大简化行动的规则,但这些规则却并不适用于大多数现实生活中的博弈。来看这样一个房地产开发博弈的例子。假定北京市的房地产市场需求有限,、两个开发商都想开发一定规模的房地产,但是市场对房地产的需求只能满足一个房地产的开发量,而且,每个房地产商必须一次性开发这一定规模的房地产才能获利。在这种情况下,无论是对开发商还是开发商,都不存在一种策略完全优于另一种策略,也不存在一个策略完全劣于另一个策略。因为,如果选择开发,则的最优策略是不开发;如果选择不开发,则的最优策略是开发;类似地,如果选择开发,则的最优策略是不开发;如果选择不开发,则的最优策略是开发。这样就形成了一个循环选择。根据纳什均衡含义就是:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是你最好的策略。即双方在对方给定的策略下不愿意调整自己的策略。这个博弈的纳什均衡点不止一个,而是两个:要么a选择开发,b不开发;要么a选择不开发,b选择开发。在这种情况下,a与b都不存在优势策略,也就是a和b不可能只要选择某一个策略而不考虑对方的所选择的策略。实际上,在有两个或两个以上纳什均衡点的博弈中,其最后结果难以预测。在房地产博弈中,我们无法知道,最后结果是a开发b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论