离散型随机变量的均值教案.ppt_第1页
离散型随机变量的均值教案.ppt_第2页
离散型随机变量的均值教案.ppt_第3页
离散型随机变量的均值教案.ppt_第4页
离散型随机变量的均值教案.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

23 离散型随机变量的均值与方差 23.1 离散型随机变量的均值,学习目标 1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值 2理解离散型随机变量均值的性质 3掌握两点分布、二项分布的均值 4会利用离散型随机变量的均值,反映离散型随机变量取值水平,解决一些相关的实际问题,课堂互动讲练,知能优化训练,23.1,课前自主学案,课前自主学案,2两点分布的分布列是,1一般地,若离散型随机变量X的分布列是,则称_为随机变量X的均值或数学期望 2离散型随机变量的均值反映了离散型随机变量取值的平均水平 3若X、Y是离散型随机变量,且YaXb,其中a,b为常数,则有E(Y)_. 4若随机变量X服从两点分布,则_. 5若XB(n,p),则E(X)_.,E(X)x1p1x2p2xipixnpn,aE(X)b,E(X)p,np,1若随机变量X等可能地取1,2,3,n,其均值为多少?,2离散型随机变量的均值与分布列有什么区别? 提示:离散型随机变量的分布列和均值虽然都是从整体和全局上刻画随机变量的,但二者有所不同分布列只给了随机变量取所有可能值的概率,而均值却反映了随机变量取值的平均水平,课堂互动讲练,求数学期望(均值)的关键是求出其分布列,然后套用数学期望(均值)公式求解 在10件产品中,有3件一等品、4件二等品、3件三等品从这10件产品中任取3件,求取出的3件产品中一等品件数X的分布列和数学期望,所以随机变量X的分布列是,【题后小结】 随机变量的均值是一个常数,它不依赖于样本的抽取,只要找清随机变量及相应的概率即可计算,互动探究1 在本例中,求取出的3件产品中二等品件数的均值,若X是随机变量,且YaXb,其中a,b为常数,则Y也是随机变量且E(Y)aE(X)b. 已知随机变量X的分布列为:,(1)求E(X); (2)若Y2X3,求E(Y) 【思路点拨】 根据分布列、期望定义和性质求解,【思维总结】 (1)该类题目属于已知离散型分布列求期望,求解方法直接套用公式,E(X)x1p1x2p2xnpn求解 (2)对于aXb型的随机变量,可利用均值的性质求解,即E(aXb)aE(X)b;也可以先列出aXb的分布列,再用均值公式求解,比较两种方法显然前者较简便,互动探究2 在本例中,若Z|X|,求E(Z) 解:当X2时,|Z|2, 当X1时,|Z|1, 当X0时,|Z|0, Z的分布列为,若B(n,p),则E()np. 某运动员投篮命中率为p0.6. (1)求一次投篮时命中次数的均值; (2)求重复5次投篮时,命中次数的均值,【思路点拨】 第一问中只有0,1两个结果,服从两点分布;第二问中服从二项分布 【解】 (1)投篮一次,命中次数的分布列为,则E()p0.6.,(2)由题意,重复5次投篮,命中的次数服从二项分布, 即B(5,0.6) 则E()np50.63. 【误区警示】 对于两点分布,找清成功率p,本题分布列不可写为,对于二项分布关键找对试验次数,(1)求的分布列; (2)求和的数学期望,的分布列为,在实际生活中,常利用随机变量均值的大小决定某些方案的优劣,解决一些决策问题 两名战士在一次射击比赛中,战士甲得1分、2分、3分的概率分别为0.4、0.1、0.5;战士乙得1分、2分、3分的概率分别为0.1、0.6、0.3,那么两名战士获胜希望较大的是谁?,【思路点拨】 希望的大小,只能通过均值来比较故先写出战士甲、乙在这次比赛中得分的概率分布,通过计算看谁得分的均值大,从而解决问题,【解】 设这次射击比赛战士甲得X1分,战士乙得X2分,则分布列分别如下:,根据均值公式, 得E(X1)10.420.130.52.1; E(X2)10.120.630.32.2. E(X2)E(X1), 故这次射击比赛战士乙得分的均值较大, 所以乙获胜希望大 【思维总结】 均值是表示随机变量的平均水平,一般情况取均值较大者为优,变式训练4 某商场要根据天气预报来决定促销活动节目是在商场内还是在商场外开展统计资料表明,每年国庆节商场内的促销活动可获得经济效益2万元;商场外的促销活动如果不遇到有雨天气可获得经济效益10万元,如果促销活动中遇到有雨天气则带来经济损失4万元,9月30日气象台预报国庆节当地有雨的概率是40%,商场应该采取哪种促销方式?,解:设该商场国庆节在商场外的促销活动获得的经济效益为万元,则:P(10)0.6,P(4)0.4,E()100.6(4)0.44.4(万元) 即国庆节在当地有雨的概率是40%的情况下,在商场外促销活动的经济效益的期望为4.4万元,超过在商场内促销活动可获得的经济效益2万元所以,商场应该选择商场外的促销活动,方法技巧 1求离散型随机变量均值的步骤 (1)确定离散型随机变量X的取值; (2)写出分布列,并检查分布列的正确与否; (3)根据公式求出均值如例1 2若X、Y是两个随机变量,且YaXb,则E(Y)aE(X)b,即随机变量X的线性函数的数学期望等于这个随机变量的期望E(X)的同一线性函数如例2,失误防范 1计算随机变量的均值,关键是把分布列写正确 2对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论