已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
棱柱、棱锥、棱台 复习课教学设计,棱柱、棱锥、棱台,教学目标 教学重点和难点 教学设计过程 课堂教学设计说明,教学目标,1理解棱柱(斜棱柱、直棱柱、正棱柱、平行六面体等)、棱锥(一般棱锥、正棱锥)、棱台(一般棱台、正棱台)的有关概念; 2理解并掌握棱柱、棱锥的一般性质,掌握正棱柱、正棱锥、正棱台(尤其是正方体、正四面体)的性质; 3能够运用直线与平面的有关知识分析、论证多面体中的线面关系,并能熟练的进行有关棱柱、棱锥、棱台中侧棱、高、斜高、侧棱与底面、侧棱与侧棱、侧面与底面所成角的有关计算; 4掌握棱柱、棱锥、棱台的侧面积与全面积的计算; 5会解决棱柱、棱锥、棱台的对角面和平行于底面的截面等有关问题,能熟练的解决其各种截面中直角三角形的有关计算,能有意识地将立体几何的计算问题转化为平面几何图形中的有关计算,教学重点和难点,重点:能够熟练的将直线与平面的有关知识运用于棱柱、棱锥、棱台几何体中 难点:将立体几何的有关计算转化为平面几何图形中的有关计算,教学设计过程,复习提问 应用举例 课堂练习 小结 作业,复习提问,(用投影仪出示下列命题) 例1 回答下列命题中条件是结论的什么条件(要求用充分非必要、必要非充分、充要条件作答) (1)有两个侧面是矩形的棱柱是直棱柱 (2)底面是正多边形的棱锥是正棱锥 (3)底面是正多边形的棱台是正棱台 (4)有两个面平行且是相似的多边形,其余各个面都是等腰梯形的几何体是棱台 (该例题重点是检查学生对所学过的这三种几何体基本概念的理解与认识故需找四名程度较差的学生作答) 讲评 (1)必要非充分条件因这两个侧面可以是相对的两个侧面 (2)必要非充分条件因正棱锥的侧面是全等的等腰三角形 (3)必要非充分条件因正棱台的侧面是全等的等腰梯形 (4)必要非充分条件,因棱台的各条侧棱相交于一点,复习提问,例2 集合A=斜棱柱,B=直棱柱,C=正棱柱,D=长方体下面命题中正确的是 BAC=棱柱 CCD=正棱柱 DB D (该例题重点是检查学生对所涉及到的这几个集合与集合中元素的理解与认识,所以在分析问题时只要用韦恩图把这几个集合间的关系清楚地表示出来即可找到正确的答案C,如图1),应用举例,例3 一个斜三棱柱ABCA1B1C1的底面是边长为5的正三角形,侧棱长为4若其中一侧棱与底面三角形的两边都成45角,求这个三棱柱的侧面积,参考答案,应用举例,例4 已知正三棱锥SABC的底面边长为a,侧面与底面所成的二面角为60,求它的高、侧棱长及相邻两侧面所成的二面角大小,参考答案,应用举例,例5 正三棱台A1B1C1ABC的侧面与底面成45角,求侧棱与底面所成角的正切值,参考答案,课堂练习,练习1 正三棱锥的高为h,侧面与底面成60的二面角,求它们全面积 练习2 正三棱锥VABC的底面边长和高都是4,它的内接正三棱柱的侧面是正方形,求棱柱上底面A1B1C1截棱锥所得的三棱台ABCA1B1C1的侧面积,参考答案,小结,深刻理解棱柱、棱锥、棱台的基本概念和各元素之间的关系,对于特殊的柱、锥、台中计算、证明问题需借助“立体几何”第一章中有关线面,面面间关系以及涉及的几何体本身的性质和定义来解决,对于平行于底面的截面性质定理及其应用,必须注意各元素间的关系以及棱锥中特征直角三角形的利用它们是将空间中的问题转化为平面图形问题的桥梁关于棱台的截面问题通常是“还台为锥”,利用棱锥的截面性质来解决,同时还要注意利用公式及棱台中特征直角三角形和直角梯形它们是联系关系式中未知量与题目中所给几何图形中的元素间关系的纽带,作业,(1)斜三棱柱ABCA1B1C1中,AB=AC=10cm,BC=12cm,A1到A,B,C三点的距离相等,AA1=13cm,求斜三棱柱的全面积 (2)如图11,正四棱锥的棱长均为a,()求侧面与底面所成角的大小;()求相邻两侧面所成二面角的余弦值 (3)如图12,棱台上、下底面面积为a2,b2,过高的两个三等分点作平行于底面的两个截面,求两个截面面积 (4)如图13,正三棱锥VABC的底面边长和高都是4,其内接正三棱柱的三个侧面都是正方形,求内接正三棱柱的全面积,课堂教学设计说明,学习完棱柱、棱锥、棱台这几种几何体之后,由于涉及到的基本概念、基础知识较多它包括了柱、锥、台的性质,同时也包含了第一章学过的所有知识因此学生们在学习中感到很困难,产生了恐惧心理为了帮助学生克服困难、克服心理上的压力本节课从“化归与转化”的思想出发,有机地把所学习过的知识联系起来,循序渐进地将立体几何图形的问题转化为平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新式储藏室购买合同
- 2024年房屋建筑施工协议样本
- 2024年提前终止劳动合同书
- 2024年房产借名注册协议
- DB4117T 209-2018 砂姜黑土强筋小麦集成栽培技术规程
- 2024年房产典当贷款合同
- DB4106T 51-2021 党政机关文印服务规范
- 2024年战略合作意向书
- 2024年数据处理与分析服务独家合作协议
- 2024年新型外墙涂料全包合同
- 社科类课题申报工作辅导报告课件
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
- 精益工厂布局及精益物流规划课件
- 注射液无菌检查的方法学验证方案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题荟萃带答案
- 复合风管制作工艺
- 多元智能测试题及多元智能测试量表
评论
0/150
提交评论