已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1章 矢量分析与场论,一、矢量和标量的定义,二、矢量的运算法则,三、矢量微分元:线元,面元,体元,四、标量场的梯度,六、矢量场的旋度,五、矢量场的散度,七、亥姆霍兹定理及重要的场论公式,一、矢量和标量的定义,1.标量:只有大小,没有方向的物理量。,矢量表示为:,所以:一个矢量就表示成矢量的模与单位矢量的乘积。,其中: 为矢量的模,表示该矢量的大小。 为单位矢量,表示矢量的方向,其大小为1。,2.矢量:不仅有大小,而且有方向的物理量。,如:力 、速度 、电场 等,如:温度 T、长度 L 等,例:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?,图示法:,力的图示法:,二、矢量的运算法则,1.加法: 矢量加法是矢量的几何和,服从平行四边形规则。,a.满足交换律:,b.满足结合律:,三个方向的单位矢量用 表示。,根据矢量加法运算:,所以:,在直角坐标系下的矢量的表示:,其中:,矢量:,.模的计算:,.单位矢量:,.方向角与方向余弦:,在直角坐标系中三个矢量加法运算:,2.减法:换成加法运算,逆矢量: 和 的模相等,方向相反,互为逆矢量。,在直角坐标系中两矢量的减法运算:,3.乘法:,(1)标量与矢量的乘积:,(2)矢量与矢量乘积分两种定义,a. 标量积(点积):,两矢量的点积含义: 一矢量在另一矢量方向上的投影与另一矢量模的乘积,其结果是一标量。,在直角坐标系中,已知三个坐标轴是相互正交的,即,有两矢量点积:,结论:两矢量点积等于对应分量的乘积之和。,推论1:满足交换律,推论2:满足分配律,推论3:当两个非零矢量点积为零,则这两个矢量必正交。,推论1:不服从交换律:,推论2:服从分配律:,推论3:不服从结合律:,推论4:当两个非零矢量叉积为零,则这两个矢量必平行。,b.矢量积(叉积):,含义: 两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。,在直角坐标系中,两矢量的叉积运算如下:,两矢量的叉积又可表示为:,(3)三重积:,三个矢量相乘有以下几种形式:,矢量,标量与矢量相乘。,标量,标量三重积。,矢量,矢量三重积。,a. 标量三重积,法则:在矢量运算中,先算叉积,后算点积。,定义:,含义: 标量三重积结果为三矢量构成的平行六面体的体积 。,注意:先后轮换次序。,推论:三个非零矢量共面的条件。,在直角坐标系中:,b.矢量三重积:,例1:,解:,则:,设,求:确定垂直于 、 所在平面的单位矢量。,三、矢量微分元:线元,面元,体元,例:,其中 : 和 称为微分元。,1.直角坐标系 在直角坐标系中,坐标变量为(x,y,z),如图,做一微分体元。,线元:,面元:,体元:,2.圆柱坐标系,在圆柱坐标系中,坐标变量为 ,如图,做一微分体元。,线元:,面元:,体元:,3.球坐标系,在球坐标系中,坐标变量为 ,如图,做一微分体元。,线元:,面元:,体元:,a. 在直角坐标系中,x,y,z 均为长度量,其拉梅系数均为1, 即:,b. 在柱坐标系中,坐标变量为 , 其中 为角度,其对应的线元 ,可见拉梅系数为:,在球坐标系中,坐标变量为 ,其中 均为 角度,其拉梅尔数为:,注意:,每个坐标长度增量同各自坐标增量之比, 称为度量系数或,在正交曲线坐标系中,其坐标变量 不一定都是长度,其线元必然有一个修正系数,这些修正系数称为拉梅系数,若已知其拉梅系数 ,就可正确写出其线元,面元和体元。,体元:,线元:,面元:,正交曲线坐标系:,四、标量场的梯度,1.标量场的等值面,可以看出:标量场的函数是单值函数,各等值面是互不 相交的。,以温度场为例:,热源,等温面,b.梯度,定义:标量场中某点梯度的大小为该点最大的方向导数, 其方向为该点所在等值面的法线方向。,数学表达式:,2.标量场的梯度,a.方向导数:,空间变化率,称为方向导数。,为最大的方向导数。,标量场的场函数为,甲:每米的温度变化为 乙:每米的温度变化为 丙:每米的温度变化为 同一温度场中,其等温面沿不同方向的变化率不同。,方向性导数不同,计算:,在直角坐标系中:,所以:,梯度也可表示:,在柱坐标系中:,在球坐标系中:,在任意正交曲线坐标系中:,在不同的坐标系中,梯度的计算公式:,在直角坐标系中:,某二维标量场梯度,五、矢量场的散度,1. 矢线(场线):,在矢量场中,若一条曲线上每一点的切线方向与场矢量在该点的方向重合,则该曲线成为矢线。,2. 通量:,定义:如果在该矢量场中取一曲面S, 通过该曲面的矢线量称为通量。,表达式:,若曲面为闭合曲面:,讨论:,a. 如果闭合曲面上的总通量,说明穿出闭合面的通量大于穿入曲面的通量,意味着闭合面内存在正的通量源。,b. 如果闭合曲面上的总通量,说明穿入的通量大于穿出的通量,那么必然有一些矢线在曲面内终止了,意味着闭合面内存在负源或称沟。,c. 如果闭合曲面上的总通量,说明穿入的通量等于穿出的通量。,3.散度:,a.定义:矢量场中某点的通量密度称为该点的散度。,b.表达式:,c.散度的计算:,在直角坐标系中,如图做一封闭曲面,该封闭曲面由六个平面组成。,矢量场 表示为:,在 x方向上:,计算穿过 和 面的通量为,因为:,则:,在 x 方向上的总通量:,在 z 方向上,穿过 和 面的总通量:,整个封闭曲面的总通量:,同理:在 y方向上,穿过 和 面的总通量:,该闭合曲面所包围的体积:,通常散度表示为:,4.散度定理:,物理含义:穿过一封闭曲面的总通量等于矢量散度的体积分。,柱坐标系中:,球坐标系中:,正交曲线坐标系中:,直角坐标系中:,常用坐标系中,散度的计算公式,六、矢量场的旋度,1.环量:,在矢量场中,任意取一闭合曲线 ,将矢量沿该曲线积分称之为环量。,可见:环量的大小与环面的方向有关。,2.旋度:,定义:一矢量其大小等于某点最大环量密度,方向为该环 的法线方向,那么该矢量称为该点矢量场的旋度。,表达式:,旋度计算:,以直角坐标系为例,一旋度矢量可表示为:,场矢量:,其中: 为x 方向的环量密度。,旋度可用符号表示:,其中:,可得:,同理:,所以:,旋度公式:,为了便于记忆,将旋度的计算公式写成下列形式:,类似的,可以推导出在广义正交坐标系中旋度计算公式:,对于柱坐标,球坐标,已知其拉梅系数,代入公式即可写出旋度的计算公式。,3.斯托克斯定理:,物理含义: 一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲线积分。,方向相反 大小相等 结果抵消,亥姆霍兹定理的简化表述如下: 若矢量场F在无限空间中处处单值, 且其导数连续有界, 而源分布在有限区域中, 则矢量场由其散度和旋度唯一地确定。 并且, 它可表示为一个标量函数的梯度和一个矢量函数的旋度之和, 即,七、 亥姆霍兹定理,矢量场的分类,根据矢量场的散度和旋度值是否为零进行分类:,1) 调和场,若矢量场F在某区域V内,处处有:F=0和F=0 则在该区域V内,场F为调和场。,注意:不存在在整个空间内散度和旋度处处均为零的矢量场。,调和场,有源无旋场,无源有旋场,有源有旋场,2) 有源无旋场,如果 ,则称矢量场F为无旋场。无旋场F可以表示为另一个标量场的梯度,即,函数u称为无旋场F的标量位函数,简称标量位。,无旋场F沿闭合路径C的环量等于零,即,这一结论等价于无旋场的曲线积分 与路径无关,只与起点P和终点Q 有关。 标量位u的积分表达式:,由 ,有,函数A称为无源场F的矢量位函数,简称矢量位。 无源场F通过任何闭合曲面S的通量等于零,即,4) 有源有旋场,一般的情况下,如果在矢量场F的散度和旋度都不为零,即,如果 ,则称矢量场F为无源场。无源场F可以表示为另一个矢量场的旋度,即,(3)无源有旋场,可将矢量场F表示为一个无源场Fs和无旋场Fi 的叠加,即,其中Fs和Fi分别满足,于是,因而,可定义一个标量位函数u和矢量位函数A,使得,重要的场论公式,1. 两个零恒等式,任何标量场梯度的旋度恒为零。,任何矢量场的旋度的散度恒为零。,在圆柱坐标系中:,在球坐标系中:,在广义正交曲线坐标系中:,2. 拉普拉斯算子,在直角坐标系中:,3. 常用的矢量恒等式,基本要求,掌握矢量在正交坐标系中的表示方法 掌握矢量的代数运算及其在坐标系中的几何意义 掌握矢量积、标量积的计算 了解矢量场散度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人医疗贷款合同
- 空调系统故障维修合同
- 2024年物流公司转让合同范本
- 湖南省七年级上学期语文期中试卷9套【附答案】
- 业主/咨询工程师标准服务协议书样本
- 2024自己和单位签的劳动合同自己没有保留
- 2024家具买卖的合同模板
- 无财产分割离婚协议书2024年模板
- 2024年购销青年鸡合同范本
- 国际技术引进代理合同专业版
- 2023年考研英语二真题(含答案及解析)【可编辑】
- 人教版九年级化学第一至四单元测试卷及答案
- 食堂员工规章制度
- 软件工程(嵌入式培养)专业职业生涯规划书
- 精力管理-课件
- 提高工作效率有技巧(一)课件
- 1+X证书无人机练习题库含答案
- 全国2023中国进出口银行各分行社会招聘考试参考题库含答案详解
- 国土空间规划概述
- 2014cad入门基础课件
- 画法几何与机械制图(山东联盟)智慧树知到答案章节测试2023年聊城大学
评论
0/150
提交评论