




已阅读5页,还剩58页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
莫兴德 广西大学 数信学院,Email:,微 积 分,链接目录,参考书,1赵树嫄. 微积分. 中国人民出版社 2同济大学. 高等数学. 高等教育出版社,第三章 导数与微分,引例 导数概念 导数的基本公式与运算法则 高阶导数 微分,导数的概念,在许多实际问题中,需要从数量上研究变量的变化速度。如物体的运动速度,电流强度,线密度,比热,化学反应速度及生物繁殖率等,所有这些在数学上都可归结为函数的变化率问题,即导数。,本章将通过对实际问题的分析,引出微分学中两个最重要的基本概念导数与微分,然后再建立求导数与微分的运算公式和法则,从而解决有关变化率的计算问题。,导数和微分是继连续性之后,函数研究的进一步深化。导数反映的是因变量相对于自变量变化的快慢程度和增减情况,而微分则是指明当自变量有微小变化时,函数大体上变化多少。,重点,导数与微分的定义及几何解释 导数与微分基本公式 四则运算法则 复合函数求导的链式法则 高阶导数 隐函数和参量函数求导,难点,导数的实质,用定义求导,链式法则,基本要求,准确叙述导数定义并深刻理解它的实质,会用定义求导数,熟记求导基本公式,牢固掌握链式法则,掌握隐函数和参量函数求导法,理解高阶导数,掌握求高阶导数的方法,弄清微分与导数的联系与区别,理解并会运用 一阶微分的形式不变性,一、问题的提出,1.自由落体运动的瞬时速度问题,如图,取极限得,上述求瞬时速度的方法对一般变速直线运动也同样适用。设物体作变速直线运动,其运动路程为s = s(t),则物体在时刻 t0 的瞬时速度定义为,速度反映了路程对时间变化的快慢程度,2.切线问题,割线的极限位置切线位置,播放,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线.,极限位置即,如图,二、导数的定义,定义,二、导数的定义,定义,即,其它形式,关于导数的说明:,导数概念是概括了各种各样的变化率而得出 的一个更一般、更抽象的概念,它撇开了变量所代表的特殊意义,而纯粹从数量方面来刻画变化率的本质,注意:,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,播放,单侧导数,1.左导数:,2.右导数:,三、由定义求导数(三步法),步骤:,例1,解,例2,解,例3,解,更一般地,例如,例4,解,特别地,例5,解,特别地,例6,解,四、导数的几何意义与物理意义,1.几何意义,切线方程为,法线方程为,切线方程为,法线方程为,切线方程为,法线方程为,例7,解,由导数的几何意义, 得切线斜率为,所求切线方程为,法线方程为,2.物理意义,非均匀变化量的瞬时变化率.,变速直线运动:路程对时间的导数为物体的瞬时速度.,交流电路:电量对时间的导数为电流强度.,非均匀的物体:质量对长度(面积,体积)的导数为物体的线(面,体)密度.,五、可导与连续的关系,定理 y=f(x)在x0可导,则f(x)在x0连续.,证,注意: 该定理的逆定理不成立.,连续函数不存在导数举例,例如,例如,例如,例8,解,六、小结,1. 导数的实质: 增量比的极限;,3. 导数的几何意义: 切线的斜率;,4. 函数可导一定连续,但连续不一定可导;,5. 求导数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汕头户外庭院施工方案
- 护坡施工方案案例范本
- 南阳工艺美术职业学院《文化创意参展参赛实训》2023-2024学年第一学期期末试卷
- 烟台科技学院《乐理基础(1)》2023-2024学年第一学期期末试卷
- 上海南湖职业技术学院《高级商务英语(三)》2023-2024学年第二学期期末试卷
- 江西外语外贸职业学院《中国古代文学史(3)》2023-2024学年第一学期期末试卷
- 浙江树人学院《建筑美学》2023-2024学年第一学期期末试卷
- 湘南学院《体育测量评价》2023-2024学年第一学期期末试卷
- 2025江西省数据库安全监控服务合同(示范文本)
- 南阳医学高等专科学校《体育网球》2023-2024学年第一学期期末试卷
- 《兰亭集序》《归去来兮辞》对比阅读课件(教材精研+情境任务)统编版高中语文选择性必修下册
- 农贸市场计量管理制度(3篇)
- 拼音bpmfdtnl课件教学课件最新
- 一级建造师《港口与航道工程管理与实务》课件专业工程技术
- 国家开放大学《社会心理学》形考任务1-4参考答案
- 《工程制图》期末考试试卷附答案
- 重症患者的容量管理课件
- 二年级下册道德与法治 课件-9 小水滴的诉说 部编版 (共16张PPT)
- 生产设备点检记录表
- 转化膜与着色技术
- DL∕T 1286-2021 火电厂烟气脱硝催化剂检测技术规范
评论
0/150
提交评论