函数的极值与导数(24).ppt_第1页
函数的极值与导数(24).ppt_第2页
函数的极值与导数(24).ppt_第3页
函数的极值与导数(24).ppt_第4页
函数的极值与导数(24).ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的极值 与导数二,一、复习引入 函数的导数与极值: 若x0满足 f/(x)=0,且在x0的两侧的导数_,则x0是f(x)的极值点,f(x0)是极值,并且如果 f/(x) 在x0两侧满足“_”,则x0是f(x)的_,f(x0)是_;如果 f/(x) 在x0两侧满足“_”,则x0是f(x)的_,f(x0)是_.极大值与极小值统称为极值.,从曲线的切线角度看,曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为_,右侧为_;曲线在极小值点左侧切线的斜率为_,右侧为_.,二、例题选讲:,例1:求y=x3/3-4x+4的极值.,解:,令 ,解得x1=-2,x2=2.,当x变化时, ,y的变化情况如下表:,因此,当x=-2时有极大值,并且,y极大值=28/3; 而,当x=2时有极小值,并且,y极小值=- 4/3.,三.探索思考:,导数值为0的点一定是函数的极值点吗?,可导函数的极值点一定是它导数为零的点,反之函数的导数为零的点,不一定是该函数的极值点.例如,函数y=x3,在点x=0处的导数为零,但它不是极值点,原因是函数在点x=0处左右两侧的导数都大于零.,因此导数为零的点仅是该点为极值点的_,其充分条件是在这点两侧的导数异号.,一般地,求函数y=f(x)的极值的方法是:,(1):如果在x0附近的左侧 f/(x)0 右侧 f/(x)0 , 那么f(x0)是极大值;,(2):如果在x0附近的左侧 f/(x)0 , 那么f(x0)是极小值.,求f/(x).令f/(x)=0得到x0,故当x=-a时,f(x)有极大值f(-a)=-2a;当x=a时,f(x)有极小值f(a)=2a.,例2:求函数 的极值.,解:函数的定义域为,令 ,解得x1=-a,x2=a(a0).,当x变化时, ,f(x)的变化情况如下表:,练习1:求函数 的极值.,解:,令 =0,解得x1=-1,x2=1.,当x变化时, ,y的变化情况如下表:,因此,当x=-1时有极大值,并且,y极大值=3; 而,当x=1时有极小值,并且,y极小值=- 3.,函数的极值 与导数三,求下列函数的导数:,例3:已知函数f(x)=-x3+ax2+b. (1)若函数f(x)在x=0,x=4处取得极值,且极小值为-1, 求a、b的值. (2)若 ,函数f(x)图象上的任意一点的切线斜 率为k,试讨论k-1成立的充要条件 .,解:(1)由 得x=0或x=2a/3.故2a/3=4, a=6.,由于当x0时, 故当x=0时, f(x)达到极小值f(0)=b,所以b=-1.,(2)等价于当 时,-3x2+2ax-1恒成立,即g(x)= 3x2-2ax-10对一切 恒成立.,由于g(0)=-10,故只需g(1)=2-2a0,即a1.,反之,当a1时,g(x)0对一切 恒成立.,所以,a1是k-1成立的充要条件.,例4:已知f(x)=ax5-bx3+c在x= 1处有极值,且极大值为 4,极小值为0.试确定a,b,c的值.,解:,由题意, 应有根 ,故5a=3b,于是:,(1)设a0,列表如下:,由表可得 ,即 .,又5a=3b,解得a=3,b=5,c=2.,(2)设a0,列表如下:,由表可得 ,即 .,又5a=3b,解得a=-3,b=-5,c=2.,练习1:已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为 10,求a、b的值.,解: =3x2+2ax+b=0有一个根x=1,故3+2a+b=0.,又f(1)=10,故1+a+b+a2=10.,由、解得 或,当a=-3,b=3时, ,此时f(x)在x=1处无 极值,不合题意.,当a=4,b=-11时,-3/111时, ,此时x=1是极 值点.,从而所求的解为a=4,b=-11.,(1)函数的极值是一个_(局部、整体)的概念,极值点是区间内部的点而不会是端点.,(2)若f(x)在某区间内有极值,那么f(x)在某区间内_(是、不是)单调函数,即在区间上单调的函数没有极值.,(3)极大值一定比极小值大码?.,(4)函数f(x)在某区间内有极值,它的极值点的分布是 有规律的,相邻两个极大值点之间必有一个极小值 点,同样相邻两个极小值点之间必有一个极大值点. 一般地,当函数f(x)在某区间上连续且有有限极值 点时,函数f(x)在该区间内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论