




已阅读5页,还剩67页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间几何体,空间几何体的结构特征,空间几何体的三视图和直观图,空间几何体的表面积与体积,柱、锥、台的结构特征,棱柱按底面的边数分为:三棱柱、四棱柱、五棱柱、,2棱柱的分类:,(1) .用平行的两底面多边形的字母表示棱柱,如: 棱柱ABCDE- A1B1C1D1E1 (2).用表示一条对角线端点的两个字母表示, 如:棱柱AC1,3棱柱的表示法,4棱柱的性质,(1)各个侧面都是平行四边形,所有侧棱都相等 (2)过棱柱不相邻的两条侧棱的截面都是平行四边形,将下列几何体按范围大到小进行排序: 四棱柱 长方体 正四棱柱 平行六面体 正方体,四棱柱平行六面体长方体正四棱柱正方体,底面是平行四边形,底面是矩形且侧棱垂直与底面,底面是正方形,高与底面边长相等,棱锥的底面,棱锥的侧面,棱锥的顶点,棱锥的侧棱,S,A,B,C,D,E,1棱锥的概念,(1) 一个面是多边形,(2) 其余各面是有一个公共顶点的三角形,棱锥的结构特征,2棱锥的分类,三棱锥,四棱锥,五棱锥,(四面体),圆柱、圆锥、圆台的结构特征,这些几何体是如何形成的?它们的结构特征是什么?,A,A,O,O,以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。,1.圆柱的结构特征,(1)圆柱的形成,(2)圆柱的结构特征,(1)圆锥的形成,2.圆锥的结构特征,以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。,2.圆锥的结构特征,练习,1、将一个直角梯形绕其较短的底所在的直线旋转一周得到一个几何体,关于该几何体的以下描绘中,正确的是( ),A、是一个圆台 B、是一个圆柱 C、是一个圆柱和一个圆锥的简单组合体 D、是一个圆柱被挖去一个圆锥后所剩的几何体,D,结构特征,用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.,3.圆台的结构特征,4. 球的结构特征,以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面,球面所围成的几何体叫作球体,简称球。,球心,半径,直径,O,想一想:用一个平面去截一个球,截面是什么?,O,用一个截面去截一个球,截面是圆面。,球面被经过球心的平面截得的圆叫做大圆。 球面被不过球心的截面截得的圆叫球的小圆。,球、圆柱、圆锥、圆台过轴的截面分别是什么图形?,想一想:,棱柱,棱锥,棱台,圆柱,圆锥,圆台,球,多面体,旋转体,简单组合体,柱、锥、台、球,2、下列关于简单几何体的说法中: (1)斜棱柱的侧面中不可能有矩形; (2)有两个面互相平行,其余各面都是平行四边形的多面体是棱柱; (3)侧面是等腰三角形的棱锥是正棱锥; (4)圆台也可看成是圆锥被平行于底面的平面所截得截面与底面之间的部分。 其中正确的是_,(4),3、下列关于多面体的说法中: (1)底面是矩形的直棱柱是长方体; (2)底面是正方形的棱锥是正四棱锥; (3)两底面都是正方形的棱台是正棱台; (4)正四棱柱就是正方体; 其中正确的是_,(1),4(P3875)、以下关于简单旋转体的说法中: (1)在圆柱的上、下底面圆周上各取一点的连线就是 圆柱的母线; (2)圆台的轴截面不可能是直角梯形; (3)圆锥的轴截面可能是直角三角形; (4)过圆锥任意两条母线所作的截面中,面积最大的是轴截面; 其中正确的是_,(2)(3),5、(P3852)下列图中,不是正方体的表面展开图的是( ),A,B,C,D,C,6、下图不是棱柱的展开图的是( ),A,B,C,D,C,7、(P3873)正方体的六个面分别涂有红,蓝,黄,绿,黑,白六种颜色,根据下图所示,绿色面的相对面是_色,绿,红,黄,黑,黄,蓝,蓝色,8、有一个正棱锥所有的棱长都相等,则这个正棱锥不可能是( ) A,正三棱锥 B,正四棱锥 C,正五棱锥 D,正六棱锥,D,9、轴截面是正三角形的圆锥侧面展开图的圆心角的弧度数为_,10(P3879)、甲烷(CH4)分子中,四个H原子恰好在一个正四面体的顶点处,C原子在这个正四面体的中心,若C原子与H原子之间的距离为1,则两个H原子之间的距离是_,11(P38710)、把一个半径为5的1/4圆卷成一个无底的圆锥筒,这个圆锥筒的高是_,12(P38711)、半径为5的一个球体,一个与球心距离为4的平面截球所得的截面的面积为_,16(P3882)、一个长,宽,高分别为5cm,4cm,3cm的长方体木块,有一只蚂蚁经木快表面从顶点A爬行到C,最短的路程是多少?,A,C,17(P38814)、正三棱锥A-BCD的底面边长为2a,侧面的顶角为300,E、F分别是AC、AD上的动点,求截面三角形BEF周长的最小值。,空间几何体的三视图和直观图,中心投影法,投射线,投射中心,投影面,投影,物体位置改变,投影大小也改变,把光由一点向外散射形成的投影,叫做中心投影。,中心投影法,S,在中心投影下,空间的点的投影是点,直线的投影是直线。,人的视觉,照片,美术作品等都是中心投影。,平行投影法,A,B,C,D,A,B,C,D,投射线与投影面相倾斜的平行投影法 -斜投影法,投射线与投影面相互垂直的平行投影法 -正投影法。,在一束平行光线的照射下形成的投射,叫做平行投影。 平行投影分正投影和斜投影两种。,三视图的形成,物体向投影面投影所得到的图形称为视图。,如果物体向三个互相垂直的投影面分别投影,所得到的三个图形摊平在一个平面上,则就是三视图。,三视图的对应规律,俯视图和左视图,主视图和俯视图,主视图和左视图,-长对齐,-高对齐,-宽对齐,侧视图,正视图,俯视图,三视图的投影规律,“正、俯视图长对正”,“正、侧视图高平齐”,“俯、侧视图宽相等,“长对正,高平齐,宽相等”是三视图之间的投影规律,是画图和读图的重要依据.,2.先画出能反映物体真实形状的一个视图,3.运用长对正、高平齐、宽相等的原则画出其它视图,4.检查,加深, 加粗,加虚。,例2、画下例几何体的三视图,圆柱,圆锥三视图,正视图,侧视图,俯视图,正视图,侧视图,俯视图,球的三视图,正视图,侧视图,俯视图,三视图 正(主)视图从正面看到的图 侧(左)视图从左面看到的图 俯视图从上面看到的图 画物体的三视图时,要符合如下原则: 位置:正视图 侧视图 俯视图 大小:长对正,高平齐,宽相等.,小结 拓展,空间几何体的直观图,要画出空间几何体的直观图, 应先学会水平放置 的平面图形的的画法,例1:用斜二测画法画水平放置的正六边形的直观图,A,B,C,D,E,F,例3:用斜二测画法画长,宽,高分别是4cm,3cm, cm的长方体ABCD-ABCD的直观图,C,D,B,C,D,A,B,A,练:1、下列结论是否正确.,(1)角的水平放置的直观图一定是角 (2)相等的角在直观图中仍相等 (3)相等的线段在直观图中仍相等 (4)若两条线段平行,则在直观图中 对应的两条线段仍平行,( ),( ),( ),( ),2、利用斜二测画法得到的 三角形的直观图是三角形 平行四边形的直观图是平行四边形 正方形的直观图是正方形 菱形的直观图是菱形,其中正确的是 ( ),练、如图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B到x轴的距离为( ),练、如图ABC是水平放置的ABC的直观图,则在ABC的三边及中线AD中,最长的线段是( ),柱、锥、台的表面积,一、填空,(1)矩形面积公式: _。 (2)三角形面积公式:_。 正三角形面积公式:_。 (3)圆面积面积公式:_。 (4)圆周长公式: _。 (5)扇形面积公式: _。 (6)扇环面积公式: _。 (7)梯形面积公式: _,二、正方体的展开图,长方体的长、宽、高分别为5、4、3,分别求它的侧面积和表面积。,三、棱柱、棱台、棱锥的表面积,用空间几何体的展开图来求它的侧面积,表面积=侧面积+底面积,一组平行四边形,一组梯形,一组三角形,例1.,设计一个正四棱锥形冷水塔塔顶,高是0.85m,底面的边长是1.5m,制造这种塔顶需要多少平方米铁板?(保留两位有效数字),四、圆柱、圆锥、圆台表面积,问题:2.圆柱、圆锥、圆台的侧面积分别和矩形、三角形、梯形的面积有什么相似的地方?,问题: 3. 圆柱、圆锥、圆台的侧面积公式有什么联系?,例2(P387例3拓).有一根长为5cm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少厘米?(精确到0.1cm),分析: 可以把圆柱沿这条母线展开,将问题转化为平面几何的问题.,1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式,小结:,柱、锥、台的体积,一、体积公式,二、常见结论,O,例,解(等体积法),D,练,正方形ABCD的边长为2,E为AB的中点,将它沿EC、ED折起,使A、B重合为点P,求三棱锥P-ECD的体积。,所给的是非规范(或条件比较分散的规 范的)几何体时,通过对图象的割补或体 积变换,化为与已知条件直接联系的规 范几何体,并作体积的加、减法。,小结,当按所给图象的方位不便计算时,可选 择条件较集中的面作底面,以便计算底 面积和高.,所给的是规范几何体,且已知条件比较 集中时,就按所给图象的方位用公式直 接计算体积.,例.有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比.,作轴截面,练:1、将半径为3cm,4cm,5cm,的锡球熔成一个大球, 求大球的半径.,3、一个正方体的各个顶点都在球面上, 正方体棱长为4cm,求这个球的体积.,2、一个球内切于棱长为4的正方体,求此球的体积.,空间几何体,空间几何体的结构,柱、锥、台、球的结构特征,简单几何体的结构特征,三视图,柱、锥、台、球的三视图,简单几何体的三视图,直观图,斜二测画法,平面图形,空间几何体,中心投影,柱、锥、台、球的表面积与体积,平行投影,柱锥台球,圆锥,圆台,多面体,旋转体,圆柱,棱柱,棱锥,棱台,概念,结构特征,侧面积,体积,球,概念,性质,侧面积,体积,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。,一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。,用一个平行于棱锥底面的平面去截棱锥,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南特殊教育职业学院《水污染控制工程》2023-2024学年第二学期期末试卷
- 中山智慧路灯施工方案
- 桥墩涉水施工方案怎么写
- 天津铁道职业技术学院《景观设计》2023-2024学年第一学期期末试卷
- 2025标准式办公室租赁合同
- 2025至2030年中国高碱玻璃球数据监测研究报告
- 2025至2030年中国除焦清灰剂数据监测研究报告
- 别墅扩建施工方案模板
- 2025至2030年中国聚氯乙烯软制品挤出板数据监测研究报告
- 2025至2030年中国睡伴胶囊数据监测研究报告
- 2025年4月自考00504艺术概论押题及答案
- 第九届全国大学生测井技能大赛备赛试题库-中(多选题)
- 公交驾驶员心理素质培训考核试卷
- 【安踏体育跨国并购亚玛芬体育的财务绩效探究12000字(论文)】
- 二下音乐《阿西里西(简谱、五线谱)》公开课课件
- 土方工程转让合同范本2024年
- 2024年甘肃省中考英语真题(含答案)
- NB-T33009-2021电动汽车充换电设施建设技术导则
- 南通2024年江苏南通市公安局苏锡通园区分局警务辅助人员招聘12人笔试历年典型考题及考点附答案解析
- 装配式建筑装饰装修技术 课件 模块七 集成卫浴
- 动力电池技术协议模版
评论
0/150
提交评论