




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1椭圆及其标准方程,如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?,生活中的椭圆,一.课题引入:,注意:椭圆定义中容易遗漏的三处地方: (1) 必须在平面内; (2)两个定点-两点间距离确定;(常记作2c) (3)绳长-轨迹上任意点到两定点距离和确定. (常记作2a, 且2a2c),1 .椭圆定义: 平面内与两个定点 的距离和等于常数(大于 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 ,二.讲授新课:,思考:在同样的绳长下,两定点间距离较长,则所画出的 椭圆较扁( 线段);两定点间距离较短,则所画出的椭圆较圆( 圆).由此可知,椭圆的形状与两定点间距离、绳长有关,轨迹是一条线段,轨迹不存在, 求动点轨迹方程的一般步骤:,(1)建立适当的坐标系,用有序实数对(x,y) 表示曲线上任意一点M的坐标; (2)写出适合条件 P(M) ; (3)用坐标表示条件P(M),列出方程 ; (4)化方程为最简形式; (5)证明以化简后的方程为所求方程(可以省略 不写,如有特殊情况,可以适当予以说明),坐标法, 探讨建立平面直角坐标系的方案,方案一,2.求椭圆的方程:,原则:尽可能使方程的形式简单、运算简单; (一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.),(对称、“简洁”),解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).,设M(x, y)是椭圆上任意一 点,椭圆的焦距2c(c0),M 与F1和F2的距离的和等于正 常数2a (2a2c) ,则F1、F2的坐标分别是(c,0)、(c,0) .,(问题:下面怎样化简?),由椭圆的定义得,限制条件:,代入坐标,两边除以 得,由椭圆定义可知,整理得,两边再平方,得,移项,再平方,叫做椭圆的标准方程。,它所表示的椭圆的焦点在x轴上, 焦点是 ,中心在坐标原点 的椭圆方程 ,其中,如果椭圆的焦点在y轴上,那么椭圆的标准方程又是怎样的呢?,合作探究,如果椭圆的焦点在y轴上(选取方式不同, 调换x,y轴)如图所示,焦点则变成 只要将方程中 的 调换,即可得,.,p,0,也是椭圆的标准方程。,总体印象:对称、简洁,“像”直线方程的截距式,焦点在y轴:,焦点在x轴:,3.椭圆的标准方程:,图 形,方 程,焦 点,F(c,0),F(0,c),a,b,c之间的关系,c2=a2-b2,|MF1|+|MF2|=2a (2a2c0),定 义,注:,共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.,不同点:焦点在x轴的椭圆 项分母较大. 焦点在y轴的椭圆 项分母较大.,例1:已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4m,外轮廓线上的点到两个焦点距离的和为3m,求这个椭圆的标准方程。,解:以两焦点 所在直线为X轴,线段 的垂直平分线为y轴,建立平面直角坐标系xOy。,则这个椭圆的标准方程为:,根据题意:2a=3,2c=2.4,所以:b2=1.52-1.22=0.81,因此,这个椭圆的方程为:,练习1.下列方程哪些表示椭圆?,若是,则判定其焦点在何轴? 并指明 ,写出焦点坐标.,?,练习2.求适合下列条件的椭圆的标准方程:,(2)焦点为F1(0,3),F2(0,3),且a=5;,(1)a= ,b=1,焦点在x轴上;,(3)两个焦点分别是F1(2,0)、F2(2,0),且过P(2,3)点;,(4)经过点P(2,0)和Q(0,3).,小结:求椭圆标准方程的步骤:,定位:确定焦点所在的坐标轴;,定量:求a, b的值.,练习3. 已知椭圆的方程为: ,请填空: (1) a=_,b=_,c=_,焦点坐标为_,焦距等于_. (2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点, 并且CF1=2,则CF2=_.,变式: 若椭圆的方程为 ,试口答完成(1).,5,4,3,6,(-3,0)、(3,0),8,练习4.已知方程 表示焦点在x轴 上的椭圆,则m的取值范围是 .,(0,4),变1:已知方程 表示焦点在y轴上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业健康基础建设培训
- 药房药品的保养与管理
- 2024湘南幼儿师范高等专科学校工作人员招聘考试及答案
- 2024沈阳医学院附属卫生学校工作人员招聘考试及答案
- 2024洛川县职业中等专业学校工作人员招聘考试及答案
- 2024湖南省芷江民族职业中专学校工作人员招聘考试及答案
- 痔疮护理诊断
- 2024渤海经济发展中等专业学校工作人员招聘考试及答案
- 合同范本:艺人经纪合作
- 物联网对智慧酒店服务的提升与创新
- 2025年新高考历史预测模拟试卷浙江卷(含答案解析)
- 义乌市事业单位招聘考试真题2024
- 企业廉洁风险防控课件教学
- T-SDFA 047-2024 混合型饲料添加剂中卡那霉素的测定 液相色谱-串联质谱法
- 2025年管道工(高级)职业技能鉴定参考试题(附答案)
- T-HHES 010-2024 生产建设项目水土流失危害评估编制导则
- 2025年上海市各区中考语文一模卷【说明文阅读题】汇集练附答案解析
- 自考心理健康教育05624心理治疗(一)打印版
- 《妊娠期合理用药》课件
- 2025年单相电子电能表项目可行性研究报告
- 2025年人教五四新版八年级数学上册阶段测试试卷
评论
0/150
提交评论