




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 空间几何体章末复习课1.空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形.棱台是棱锥被平行于底面的平面所截而成的.这三种几何体都是多面体.(2)圆柱、圆锥、圆台、球分别是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体.在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面.(3)由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体.2.空间几何体的三视图与直观图(1)三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;它包括正视图、侧视图、俯视图三种.画图时要遵循“长对正、高平齐、宽相等”的原则.注意三种视图的摆放顺序,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.熟记常见几何体的三视图.画组合体的三视图时可先拆,后画,再检验.(2)斜二测画法:主要用于水平放置的平面图形或立体图形的画法.它的主要步骤:(1)画轴;(2)画平行于x、y、z轴的线段分别为平行于x、y、z轴的线段;(3)截线段:平行于x、z轴的线段的长度不变,平行于y轴的线段的长度变为原来的一半.三视图和直观图都是空间几何体的不同表示形式,两者之间可以互相转化,这也是高考考查的重点;根据三视图的画法规则理解三视图中数据表示的含义,从而可以确定几何体的形状和基本量.3.几何体的侧面积和体积的有关计算柱体、锥体、台体和球体的侧面积和体积公式面积体积圆柱S侧2rhVShr2h圆锥S侧rlVShr2hr2圆台S侧(r1r2)lV(S上S下)h(rrr1r2)h直棱柱S侧ChVSh正棱锥S侧ChVSh正棱台S侧(CC)hV(S上S下)h球S球面4R2VR3方法一几何体的三视图和直观图空间几何体的三视图、直观图以及两者之间的转化是本章的难点,也是重点.解题需要依据它们的概念及画法规则,同时还要注意空间想象能力的运用.【例1】 将正方体如图(1)所示截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()解析还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.答案B【训练1】 若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析所给选项中,A、C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有B选项符合.答案B方法二几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常能够遇到的问题,如制作物体的下料问题、材料最省问题等.这里应注意各数量之间的关系及各元素之间的位置关系.在计算中,要充分利用平面几何知识,特别注意应用柱体、锥体、台体的侧面展开图.组合体的表面积和体积,可以通过割补法转化为柱体、锥体、台体等的表面积和体积.【例2】 如图所示,已知三棱柱ABCABC,侧面BBCC的面积是S,点A到侧面BBCC的距离是a,求三棱柱ABCABC的体积.解连接AB,AC,如图所示,这样就把三棱柱分割成了两个棱锥.设所求体积为V,显然三棱锥AABC的体积是V.而四棱锥ABCCB的体积为Sa,故有VSaV,即VSa.【训练2】 某几何体的三视图如图所示,则该几何体的体积为()A.168 B.88C.1616 D.816解析将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V422224168.答案A方法三转化与化归思想运用转化与化归的思想寻求解题途径,常用如下几种策略:(1)已知与未知的转化.由已知想可知,由未知想需知,通过联想,寻找解题途径.(2)正面与反面的转化.在处理某一问题时,按照习惯思维方式从正面思考遇到困难,甚至不可能时,用逆向思维的方式去解决,往往能达到以突破性的效果.(3)一般与特殊的转化.特殊问题的解决往往是比较容易的,可以利用特殊问题内含的本质联系,通过演绎,得出一般结论,从而使问题得以解决.(4)复杂与简单的转化.把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解决,这是解数学问题的一条重要原则.【例3】 如图所示,圆台母线AB长为20 cm,上、下底面半径分别为5 cm和10 cm,从母线AB的中点M拉一条绳子绕圆台侧面转到B点,求这条绳子长度的最小值.解如图所示,作出圆台的侧面展开图及其所在的圆锥.连接MB,P、Q分别为圆台的上、下底面的圆心.在圆台的轴截面中,RtOPARtOQB,.OA20(cm).设BOB,由扇形弧的长与底面圆Q的周长相等,得2102OB,即202(2020),90.在RtBOM中,BM50(cm),即所求绳长的最小值为50 cm.【训练3】 圆柱的轴截面是边长为5 cm的正方形ABCD,从A到C圆柱侧面上的最短距离为()A.10 cm B. cmC.5 cm D.5 cm解析如图所示,沿母线BC展开,曲面上从A到C的最短距离为平面上从A到C的线段的长.ABBC5,AB2.AC5(cm).答案B1.(2016全国卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A20 B24C28 D32解析由三视图可知,组合体的底面圆的面积和周长均为4,圆锥的母线长l4,所以圆锥的侧面积为S锥侧448,圆柱的侧面积S柱侧4416,所以组合体的表面积S816428,故选C.答案C2(2016全国)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A1836 B5418C90 D81解析由题意知,几何体为平行六面体,边长分别为3,3,几何体的表面积S362332325418.答案B3.(2015全国)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛 B.22斛 C.36斛 D.66斛解析由题意知:米堆的底面半径为(尺),体积VR2h(立方尺).所以堆放的米大约为22(斛).答案B4.(2015浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8 cm3 B.12 cm3 C. cm3 D. cm3解析先由三视图还原几何体,再利用相应的体积公式计算.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm的正方体,体积V12228(cm3);上面是底面边长为2 cm,高为2 cm的正四棱锥,体积V2222(cm3).所以该几何体的体积VV1V2(cm3).答案C5.(2015陕西高考)一个几何体的三视图如图所示,则该几何体的表面积为()A.3 B.4C.24 D.34解析由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为:S212212222434.答案D6.(2014浙江高考)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90 cm2 B.129 cm2C.132 cm2 D.138 cm2解析该几何体如图所示,长方体的长、宽、高分别为6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm,5 cm,所以表面积S2(4643)36339939138(cm2).答案D7(2016北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为_解析由三视图知该四棱柱为直四棱柱,底面积S,高h1,所以四棱柱体积VSh1.答案8(2016浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.解析由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm,下面长方体是底面边长为4 cm,高为2 cm,其直观图如右图:其表面积S62224242422280(cm2)体积V22244240(cm3)答案80409.(2013浙江高考)若某几何体的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省大连市新民间联盟2024-2025学年初三第六次摸底考试数学试题含解析
- 辽宁省大石桥市重点名校2025年初三联考考试数学试题含解析
- 色达县2025年三下数学期末考试模拟试题含解析
- 江苏宿迁市2024-2025学年下学期高三生物试题(文史类)一模考试试卷含解析
- 浙江水利水电学院《分子与细胞生物学检测技术》2023-2024学年第二学期期末试卷
- 伊春市嘉荫县2025届三下数学期末质量检测试题含解析
- 室内装饰材料员培训
- 如何打造高端大气活动
- 2025购车合同简版格式
- 2025华帝租赁合同
- 实验验证动量守恒定律(教学设计)高二物理系列(人教版2019选择性)
- 2024老年烧创伤创面MEEK植皮技术规范
- 2024年二级建造师继续教育题库及答案(500题)
- 企业所得税汇算清缴申报表电子表格版(带公式-自动计算)
- 2024年中国BIM行业市场动态分析、发展方向及投资前景分析报告
- 2024年四川省成都市温江区中考数学二诊试卷(含答案)
- 超星尔雅学习通《形象管理(南开大学)》2024章节测试答案
- (正式版)JBT 2930-2024 低压电器产品型号编制方法
- 灭火器检查的流程与步骤详解
- 2024年上海市虹口区街道社区工作者招聘笔试冲刺题(带答案解析)
- 2023年漳州市医院考试招聘考试真题及答案
评论
0/150
提交评论