已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.6 三角函数模型的简单应用学习目标1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型.知识点利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化.思考现实世界中的周期现象可以用哪种数学模型描述?答案三角函数模型.梳理(1)利用三角函数模型解决实际问题的一般步骤:第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字,理解题目所反映的实际背景,在此基础上分析出已知什么、求什么,从中提炼出相应的数学问题.第二步:收集、整理数据,建立数学模型.根据收集到的数据找出变化规律,运用已掌握的三角函数知识、物理知识及相关知识建立关系式,将实际问题转化为一个与三角函数有关的数学问题,即建立三角函数模型,从而实现实际问题的数学化.第三步:利用所学的三角函数知识对得到的三角函数模型予以解答.第四步:将所得结论转译成实际问题的答案.(2)三角函数模型的建立程序如图所示:类型一三角函数模型在物理中的应用例1已知电流I与时间t的关系为IAsin(t).(1)如图所示的是IAsin(t)(0,|)在一个周期内的图象,根据图中数据求IAsin(t)的解析式;(2)如果t在任意一段的时间内,电流IAsin(t)都能取得最大值和最小值,那么的最小正整数值是多少?解(1)由图可知A300,设t1,t2,则周期T2(t2t1)2.150.又当t时,I0,即sin0,而|0),300942,又N*,故所求最小正整数943.反思与感悟此类问题的解决关键是将图形语言转化为符号语言,其中,读图、识图、用图是数形结合的有效途径.跟踪训练1一根细线的一端固定,另一端悬挂一个小球,当小球来回摆动时,离开平衡位置的位移S(单位:cm)与时间t(单位:s)的函数关系是S6sin(2t).(1)画出它的图象;(2)回答以下问题:小球开始摆动(即t0),离开平衡位置是多少?小球摆动时,离开平衡位置的最大距离是多少?小球来回摆动一次需要多少时间?解(1)周期T1(s).列表:t012t226sin(2t)360603描点画图:(2)小球开始摆动(即t0),离开平衡位置为3 cm.小球摆动时离开平衡位置的最大距离是6 cm.小球来回摆动一次需要1 s(即周期).类型二三角函数模型在生活中的应用例2某游乐园的摩天轮最高点距离地面108米,直径长是98米,匀速旋转一圈需要18分钟.如果某人从摩天轮的最低处登上摩天轮并开始计时,那么:(1)当此人第四次距离地面 米时用了多少分钟?(2)当此人距离地面不低于(59)米时可以看到游乐园的全貌,求摩天轮旋转一圈中有多少分钟可以看到游乐园的全貌?解(1)如图,建立平面直角坐标系,设此人登上摩天轮t分钟时距地面y 米,则tt. 由y108cost49cost59(t0).令49cost59,得cost,t2k,故t18k3,kZ,故t3,15,21,33.故当此人第四次距离地面 米时用了33分钟.(2)由题意得49cost5959,即cost.故不妨在第一个周期内求即可,所以t,解得t,故3.因此摩天轮旋转一圈中有3分钟可以看到游乐园的全貌.反思与感悟解决三角函数的实际应用问题必须按照一般应用题的解题步骤执行:(1)认真审题,理清问题中的已知条件与所求结论;(2)建立三角函数模型,将实际问题数学化;(3)利用三角函数的有关知识解决关于三角函数的问题,求得数学模型的解;(4)根据实际问题的意义,得出实际问题的解;(5)将所得结论返回、转译成实际问题的答案.跟踪训练2如图所示,一个摩天轮半径为10 m,轮子的底部在距离地面2 m处,如果此摩天轮按逆时针转动,每30 s转一圈,且当摩天轮上某人经过点P处(点P与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,大约有多长时间此人相对于地面的高度不小于17 m.解(1)设在t s时,摩天轮上某人在高h m处.这时此人所转过的角为 t t,故在t s时,此人相对于地面的高度为h10sin t12(t0).(2)由10sint1217,得sint,则t.故此人有10 s相对于地面的高度不小于17 m.1.一根长l cm的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s(cm)与时间t(s)的函数关系式为s3cos,其中g是重力加速度,当小球摆动的周期是1 s时,线长l_ cm.答案解析T1, 2,l.2.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数yaAcos(x1,2,3,12)来表示,已知6月份的月平均气温最高,为28,12月份的月平均气温最低,为18,则10月份的平均气温为_.答案20.5解析由题意可知A5,a23,从而y5cos23.故10月份的平均气温值为y5cos2320.5.3.一个单摆的平面图如图.设小球偏离铅锤方向的角为(rad),并规定当小球在铅锤方向右侧时为正角,左侧时为负角.作为时间t(s)的函数,近似满足关系式Asin(t),其中0.已知小球在初始位置(即t0)时,且每经过 s小球回到初始位置,那么A_;关于t的函数解析式是_.答案sin(2t),t0,)解析当t0时,Asin,A.又周期T,解得2.故所求的函数解析式是sin(2t),t0,).4.某实验室一天的温度(单位:)随时间t(单位:h)的变化近似满足函数关系:f(t)102sin(t),t0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11,则在哪段时间实验室需要降温?解(1)因为f(t)102sin(t),又0t24,所以t11时实验室需要降温.由(1)得f(t)102sin(t),故有102sin(t)11,即sin(t).又0t24,因此t,即10t时,BON,hOABN3030sin(),当00,0)的图象如图所示,则当t秒时,电流强度是_安. 答案5解析由图象可知A10,周期T2(),100,I10sin(100t),当t秒时,I10sin(2)5(安).9.设某人的血压满足函数式p(t)11525sin(160t),其中p(t)为血压(mmHg),t为时间(min),则此人每分钟心跳的次数是_.答案80解析T(分),f80(次/分).10.下图表示相对于平均海平面的某海湾的水面高度h(m)在某天024时的变化情况,则水面高度h关于时间t的函数解析式为_.答案h6sin t,t0,24解析根据题图设hAsin(t),则A6,T12,12,.点(6,0)为“五点”作图法中的第一点,60,h6sin(t)6sin t,t0,24.11.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀地绕点O旋转,当时间t0时,点A与钟面上标12的点B重合,将A、B两点的距离d(cm)表示成t(s)的函数,则d_,其中t0,60.答案10sin 解析将解析式可写为dAsin(t)的形式,由题意易知A10,当t0时,d0,得0;当t30时,d10,可得,所以d10sin .12.设偶函数f(x)Asin(x)(A0,0,0)的部分图象如图所示,KLM为等腰直角三角形,KML90,KL1,则f()的值为_.答案解析取K,L的中点N,则MN,因此A.由T2得.函数为偶函数,0,f(x)cos x,f()cos .三、解答题13.如图,一个水轮的半径为4 m,水轮圆心O距离水面2 m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间. (1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约需要多少时间?解(1)如图所示建立直角坐标系,设角是以Ox为始边,OP0为终边的角. OP每秒钟内所转过的角为,则OP在时间t(s)内所转过的角为t.由题意可知水轮逆时针转动,得z4sin2.当t0时,z0,得sin ,即.故所求的函数关系式为z4sin2.(2)令z4sin26,得sin1,令t,得t4,故点P第一次到达最高点大约需要4 s.四、探究与拓展14.有一冲击波,其波形为函数ysin的图象,若其在区间0,t上至少有2个波峰,则正整数t的最小值是()A.5 B.6 C.7 D.8答案C15.如图所示,某地夏天从814时的用电量变化曲线近似满足函数yAs
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生心理健康教育与感恩教育教案范文
- 课时1 七年级 Unit 1 2025年中考英语(仁爱版)一轮复习基础练(含答案)
- 课堂表扬的艺术教师经验分享
- 2024至2030年中国地轨行走式收放线装置数据监测研究报告
- 2024至2030年中国叠氮化钠数据监测研究报告
- 2024至2030年中国医疗垃圾焚烧炉数据监测研究报告
- 2024至2030年中国六开双色双面印刷机行业投资前景及策略咨询研究报告
- 2024年重庆市初中学业水平暨高中招生考试语文试题(A卷)含答案
- 2024年中国立式管道式离心泵市场调查研究报告
- 2024年中国油炸牛排模型市场调查研究报告
- 中国绿电制氢行业投资分析、市场运行态势、未来前景预测报告
- DL-T5710-2014电力建设土建工程施工技术检验规范
- 2024劳动合同职业危害告知书
- 《大学生职业发展与就业指导》课程标准
- 天津市2023-2024学年九年级上册期中考试物理试题(附答案)
- 统计与数据分析基础-形成性考核二(项目3-项目5阶段性测试权重25%)-国开-参考资料
- 外汇风险管理培训课件讲义
- 气管肿瘤的护理查房
- 《精神科保护性约束实施及解除专家共识》解读
- 友善教育主题班会省公开课一等奖全国示范课微课金奖课件
- 酒店建筑设计设计说明
评论
0/150
提交评论