2019版高考数学复习立体几何7.7立体几何中的向量方法课后作业理.docx_第1页
2019版高考数学复习立体几何7.7立体几何中的向量方法课后作业理.docx_第2页
2019版高考数学复习立体几何7.7立体几何中的向量方法课后作业理.docx_第3页
2019版高考数学复习立体几何7.7立体几何中的向量方法课后作业理.docx_第4页
2019版高考数学复习立体几何7.7立体几何中的向量方法课后作业理.docx_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

77立体几何中的向量方法重点保分 两级优选练A级一、选择题1已知点A(2,5,1),B(2,2,4),C(1,4,1),则向量与的夹角为()A30 B45 C60 D90答案C解析由已知得(0,3,3),(1,1,0),cos,.向量与的夹角为60.故选C.2(2018伊宁期末)三棱锥ABCD中,平面ABD与平面BCD的法向量分别为n1,n2,若n1,n2,则二面角ABDC的大小为()A. B. C.或 D.或答案C解析二面角的范围是0,且n1,n2,二面角ABDC的大小为或.故选C.3(2017太原期中)已知直四棱柱ABCDA1B1C1D1中,底面ABCD为正方形,AA12AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为()A. B. C. D.答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系设AA12AB2,则B(1,1,0),E(1,0,1),C(0,1,0),D1(0,0,2)(0,1,1),(0,1,2)cos,.故选C.4如图所示,在正方体ABCDA1B1C1D1中,E,F分别在A1D,AC上,且A1EA1D,AFAC,则()AEF至多与A1D,AC之一垂直BEFA1D,EFACCEF与BD1相交DEF与BD1异面答案B解析以D点为坐标原点,以DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E,F,B(1,1,0),D1(0,0,1),(1,0,1),(1,1,0),(1,1,1),0,从而EFBD1,EFA1D,EFAC.故选B.5(2018河南模拟)如图所示,直三棱柱ABCA1B1C1的侧棱长为3,底面边长A1C1B1C11,且A1C1B190,D点在棱AA1上且AD2DA1,P点在棱C1C上,则的最小值为()A. B C. D答案B解析建立如图所示的直角坐标系,则D(1,0,2),B1(0,1,3),设P(0,0,z)(0z3),则(1,0,2z),(0,1,3z),00(2z)(3z)2,故当z时,取得最小值为.故选B.6(2018沧州模拟)如图所示,在正方体ABCDABCD中,棱长为1,E,F分别是BC,CD上的点,且BECFa(0a0),(1,0,a)设平面EBD的法向量为n(x,y,z),则有即令z1,则n(2,0,1),由题意得sin45|cos,n|,解得a3或.由a0,得a3,(1,0,3),(1,2),cos,故异面直线OF与BE所成的角的余弦值为.16(2014全国卷)如图,四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点(1)证明:PB平面AEC;(2)设二面角DAEC为60,AP1,AD,求三棱锥EACD的体积解(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EOPB.又EO平面AEC,PB平面AEC,所以PB平面AEC.(2)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,的方向为x轴的正方向,|为单位长度,建立空间直角坐标系Axyz,则D(0,0),E,.设B(m,0,0)(m0),则C(m,0),(m,0)设n1(x,y,z)为平面ACE的法向量,则即可取n1.又n2(1,0,0)为平面DAE的法向量,由题设得|cosn1,n2|,即 ,解得m.因为E为PD的中点,所以三棱锥EACD的高为.三棱锥EACD的体积V.17(2017河北衡水中学调研)如图1所示,在直角梯形ABCD中,ADBC,BAD,ABBC1,AD2,E是线段AD的中点,O是AC与BE的交点将ABE沿BE折起到A1BE的位置,如图2所示(1)证明:CD平面A1OC;(2)若平面A1BE平面BCDE,求直线BD与平面A1BC所成角的正弦值解(1)证明:在题图1中,连接CE,因为ABBC1,AD2,E是AD的中点,BAD,所以四边形ABCE为正方形,四边形BCDE为平行四边形,所以BEAC.在题图2中,BEOA1,BEOC,又OA1OCO,从而BE平面A1OC.又CDBE,所以CD平面A1OC.(2)由(1)知BEOA1,BEOC,所以A1OC为二面角A1BEC的平面角,又平面A1BE平面BCDE,所以A1OC,所以OB,OC,OA1两两垂直如图,以O为原点,OB,OC,OA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则B,E,A1,C,得,由(,0,0),得D.所以.设平面A1BC的法向量为n(x,y,z),直线BD与平面A1BC所成的角为,则得取x1,得n(1,1,1)从而sin|cos,n|,即直线BD与平面A1BC所成角的正弦值为.18.九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑如图,在阳马PABCD中,侧棱PD底面ABCD,且PDCD,过棱PC的中点E,作EFPB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB平面DEF.试判断四面体DBEF是否为鳖臑?若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若平面DEF与平面ABCD所成二面角的大小为,求的值解(1)证明:如图,以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系设PDDC1,BC,则D(0,0,0),P(0,0,1),B(,1,0),C(0,1,0),(,1,1),点E是PC的中点,所以E,于是0,即PBDE.又已知EFPB,而DEEFE,所以PB平面DEF.因(0,1,1),0,则DEPC,所以DE平面PBC.由DE平面PBC,PB平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为DEB,DEF,EFB,DFB.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论