全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考达标检测(六十) 不等式证明1已知a,b都是正实数,且ab2,求证:1.证明:a0,b0,ab2,1.ab22,ab1.0.1.2已知定义在R上的函数f(x)|x1|x2|的最小值为a.(1)求a的值;(2)若p,q,r是正实数,且满足pqra,求证:p2q2r23.解:(1)因为|x1|x2|(x1)(x2)|3,当且仅当1x2时,等号成立,所以f(x)的最小值等于3,即a3.(2)证明:由(1)知pqr3,又因为p,q,r是正实数,所以(p2q2r2)(121212)(p1q1r1)2(pqr)29,即p2q2r23.3(2018云南统一检测)已知a是常数,对任意实数x,不等式|x1|2x|a |x1|2x|都成立(1)求a的值;(2)设mn0,求证:2m2na.解:(1)设f(x)|x1|2x|,则f(x)f(x)的最大值为3.对任意实数x,|x1|2x|a都成立,即f(x)a,a3.设h(x)|x1|2x|,则h(x)则h(x)的最小值为3.对任意实数x,|x1|2x|a都成立,即h(x)a,a3.a3.(2)证明:由(1)知a3.2m2n(mn)(mn),且mn0,(mn)(mn)33.2m2na.4已知x,y,z是正实数,且满足x2y3z1.(1)求的最小值;(2)求证:x2y2z2.解:(1)x,y,z是正实数,且满足x2y3z1,(x2y3z)6 6222,当且仅当且且时取等号(2)由柯西不等式可得1(x2y3z)2(x2y2z2)(122232)14(x2y2z2),x2y2z2,当且仅当x,即x,y,z时取等号故x2y2z2.5(2018石家庄模拟)已知函数f(x)|x|x1|.(1)若f(x)|m1|恒成立,求实数m的最大值M;(2)在(1)成立的条件下,正实数a,b满足a2b2M,证明:ab2ab.解:(1)由绝对值不等式的性质知f(x)|x|x1|xx1|1,f(x)min1,只需|m1|1,即1m11,0m2,实数m的最大值M2.(2)证明:a2b22ab,且a2b22,ab1,1,当且仅当ab时取等号又,当且仅当ab时取等号由得,ab2ab.6(2018吉林实验中学模拟)设函数f(x)|xa|.(1)当a2时,解不等式f(x)4|x1|;(2)若f(x)1的解集为0,2,a(m0,n0),求证:m2n4.解:(1)当a2时,不等式为|x2|x1|4.当x2时,不等式可化为x2x14,解得x;当1x2时,不等式可化为2xx14,不等式的解集为;当x1时,不等式可化为2x1x4,解得x.综上可得,不等式的解集为.(2)证明:f(x)1,即|xa|1,解得a1xa1,而f(x)1的解集是0,2,解得a1,所以1(m0,n0),所以m2n(m2n)222 4,当且仅当m2,n1时取等号7已知a,b,c,d均为正数,且adbc.(1)证明:若adbc,则|ad|bc|;(2)若t,求实数t的取值范围解:(1)证明:由adbc,且a,b,c,d均为正数,得(ad)2(bc)2,又adbc,所以(ad)2(bc)2,即|ad|bc|.(2)因为(a2b2)(c2d2)a2c2a2d2b2c2b2d2a2c22abcdb2d2(acbd)2,所以tt(acbd)由于 ac, bd,又已知t ,则t(acbd) (acbd),故t ,当且仅当ac,bd时取等号所以实数t的取值范围为,)8已知函数f(x)|x1|.(1)解不等式f(2x)f(x4)8;(2)若|a|1,|b|f .解:(1)f(2x)f(x4)|2x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《语言程序设计》2021-2022学年期末试卷
- 石河子大学《双碳概论》2023-2024学年第一学期期末试卷
- 石河子大学《工程项目管理》2022-2023学年第一学期期末试卷
- 石河子大学《材料力学》2023-2024学年第一学期期末试卷
- 九年级数学专题总复习(含答案)
- 沈阳理工大学《力学》2021-2022学年第一学期期末试卷
- 沈阳理工大学《机电传动控制》2022-2023学年期末试卷
- 四史2023-2024-2学期学习通超星期末考试答案章节答案2024年
- 沈阳理工大学《动态网络广告》2022-2023学年期末试卷
- 关于合同法的专著
- KPI考核表-品质部
- Access数据库课程标准
- 幼儿园中班语言:《两只蚊子吹牛皮》 课件
- 临时用电漏电保护器运行检测记录表
- 头痛的国际分类(第三版)中文
- 音乐ppt课件《小小的船》
- 幼儿园教学课件语言教育《雪地里的小画家》
- 结构化面试经典100题及答案
- ESG引领下的西部城市再出发-新型城市竞争力策略研究白皮书
- 小学生班干部竞选自我介绍PPT模板公开课一等奖市赛课获奖课件
- 万科物业岗位说明书2
评论
0/150
提交评论