




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.5.1平面几何中的向量方法学习目标1.学习用向量方法解决某些简单的平面几何问题及其他一些实际问题的过程.2.体会向量是一种处理几何问题的有力工具.3.培养运算能力、分析和解决实际问题的能力.向量是数学中证明几何命题的有效工具之一.在证明几何命题时,可先把已知条件和结论表示成向量的形式,再通过向量的运算就很容易得出结论.一般地,利用实数与向量的积可以解决共线、平行、长度等问题,利用向量的数量积可解决长度、角度、垂直等问题.向量的坐标表示把点与数联系了起来,这样就可以用代数方程研究几何问题,同时也可以用向量来研究某些代数问题.向量的数量积体现了向量的长度与三角函数间的关系,把向量的数量积应用到三角形中,就能解决三角形的边角之间的有关问题.知识点一几何性质及几何与向量的关系设a(x1,y1),b(x2,y2),a,b的夹角为.思考1证明线段平行、点共线及相似问题,可用向量的哪些知识?答案可用向量共线的相关知识:ababx1y2x2y10(b0).思考2证明垂直问题,可用向量的哪些知识?答案可用向量垂直的相关知识:abab0x1x2y1y20.梳理平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来.知识点二向量方法解决平面几何问题的步骤1.建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.2.通过向量运算,研究几何元素之间的关系,如距离、夹角等问题.3.把运算结果“翻译”成几何关系.类型一用平面向量求解直线方程例1已知ABC的三个顶点A(0,4),B(4,0),C(6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.解(1)由已知得点D(1,1),E(3,1),F(2,2),设M(x,y)是直线DE上任意一点,则.(x1,y1),(2,2).(2)(x1)(2)(y1)0,即xy20为直线DE的方程.同理可求,直线EF,FD的方程分别为x5y80,xy0.(2)设点N(x,y)是CH所在直线上任意一点,则.0.又(x6,y2),(4,4).4(x6)4(y2)0,即xy40为所求直线CH的方程.反思与感悟利用向量法解决解析几何问题,首先将线段看成向量,再把坐标利用向量法则进行运算.跟踪训练1在ABC中,A(4,1),B(7,5),C(4,7),求A的平分线所在的直线方程.解(3,4),(8,6),A的平分线的一个方向向量为a.设P(x,y)是角平分线上的任意一点,A的平分线过点A,a,所求直线方程为(x4)(y1)0.整理得7xy290.类型二用平面向量求解平面几何问题例2已知在正方形ABCD中,E、F分别是CD、AD的中点,BE、CF交于点P.求证:(1)BECF;(2)APAB.证明建立如图所示的平面直角坐标系,设AB2,则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1). (1)(1,2),(2,1).(1)(2)2(1)0,即BECF.(2)设点P坐标为(x,y),则(x,y1),(2,1),x2(y1),即x2y2,同理,由,得y2x4,由得点P的坐标为(,).| 2|,即APAB.反思与感悟用向量证明平面几何问题的两种基本思路:(1)向量的线性运算法的四个步骤:选取基底;用基底表示相关向量;利用向量的线性运算或数量积找出相应关系;把几何问题向量化.(2)向量的坐标运算法的四个步骤:建立适当的平面直角坐标系;把相关向量坐标化;用向量的坐标运算找出相应关系;把几何问题向量化.跟踪训练2如图,在正方形ABCD中,P为对角线AC上任一点,PEAB,PFBC,垂足分别为E,F,连接DP,EF,求证:DPEF. 证明方法一设正方形ABCD的边长为1,AEa(0a1),则EPAEa,PFEB1a,APa,()()1acos 1801(1a)cos 90aacos 45a(1a)cos 45aa2a(1a)0.,即DPEF.方法二如图,以A为原点,AB,AD所在直线分别为x轴,y轴建立平面直角坐标系. 设正方形ABCD的边长为1,AP(0),则D(0,1),P(,),E(,0),F(1,).(,1),(1,).220,即DPEF.1.已知在ABC中,若a,b,且ab0,则ABC的形状为()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定答案A2.过点A(2,3),且垂直于向量a(2,1)的直线方程为()A.2xy70 B.2xy70C.x2y40 D.x2y40答案A解析设P(x,y)为直线上一点,则a,即(x2)2(y3)10,即2xy70.3.在四边形ABCD中,若0,0,则四边形ABCD为()A.平行四边形 B.矩形C.等腰梯形 D.菱形答案D解析0,四边形ABCD为平行四边形.又0,即平行四边形ABCD的对角线垂直,平行四边形ABCD为菱形.4.如图,在平行四边形ABCD中,已知AB8,AD5,3,2,则的值是_.答案22解析由3,得,.因为2,所以()()2,即222.又因为225,264,所以22.5.如图所示,在ABC中,点O是BC的中点.过点O的直线分别交直线AB,AC于不同的两点M,N,若m,n,则mn的值为_.答案2解析O是BC的中点,().又m,n,.又M,O,N三点共线,1,则mn2.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量;另一种思路是建立坐标系,求出题目中涉及的向量的坐标.课时作业一、选择题1.在ABC中,已知A(4,1),B(7,5),C(4,7),则BC边的中线AD的长是()A.2 B.C.3 D.答案B解析BC的中点为D,|.2.点O是三角形ABC所在平面内的一点,满足,则点O是ABC的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点答案D解析,()0,0,OBAC.同理OABC,OCAB,O为三条高的交点.3.已知非零向量与满足0且,则ABC的形状是()A.三边均不相等的三角形B.直角三角形C.等腰(非等边)三角形D.等边三角形答案D解析由0,得角A的平分线垂直于BC,ABAC.而cos,又,0,180,BAC60.故ABC为等边三角形,故选D.4.在四边形ABCD中,若(1,2),(4,2),则该四边形的面积为()A. B.2 C.5 D.10答案C解析0,ACBD.四边形ABCD的面积S|25.5.已知点A(2,3),B(19,4),C(1,6),则ABC是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形答案C解析(19,4)(2,3)(21,7),(1,6)(2,3)(1,3),21210,又|,ABC为直角三角形.6.已知点P是ABC所在平面内一点,若,其中R,则点P一定在()A.ABC的内部 B.AC边所在的直线上C.AB边所在的直线上 D.BC边所在的直线上答案B解析,P,A,C三点共线,点P一定在AC边所在的直线上.7.在ABCD中,AD1,BAD60,E为CD的中点,若1,则AB的长为()A.1 B. C. D.答案B解析设AB的长为a(a0),因为,所以()()22a2a1.由已知,得a2a11,又因为a0,所以a,即AB的长为.二、填空题8.已知在矩形ABCD中,AB2,AD1,E,F分别为BC,CD的中点,则()_.答案解析如图,以AB所在直线为x轴,以AD所在直线为y轴建立平面直角坐标系,则A(0,0),B(2,0),D(0,1),C(2,1).E,F分别为BC,CD的中点,E,F(1,1),(2,1),()3(2)1.9.已知直线axbyc0与圆x2y21相交于A,B两点,若|AB|,则_.答案解析如图,作ODAB于点D,则在RtAOD中,OA1,AD,所以AOD60,AOB120,所以|cos 12011().10.若点M是ABC所在平面内的一点,且满足30,则ABM与ABC的面积之比为_.答案13解析如图,D为BC边的中点,则().因为30,所以32,所以,所以SABMSABDSABC.三、解答题11.在等腰梯形ABCD中,已知ABDC,AB2,BC1,ABC60,动点E和F分别在线段BC和DC上,且,求的最小值.解在等腰梯形ABCD中,由AB2,BC1,ABC60,可得DC1,()()21cos 60211cos 60cos 120,由对勾函数的性质知2 ,当且仅当,即时,取得最小值.12.如图所示,在正三角形ABC中,D、E分别是AB、BC上的一个三等分点,且分别靠近点A、点B,且AE、CD交于点P.求证:BPDC. 证明设,并设ABC的边长为a,则有()(21),.,(21)kk.于是有解得.,从而()()a2a2a2cos 600,BPDC.13.如图,已知平行四边形ABCD的顶点A(0,0),B(4,1),C(6,8). (1)求顶点D的坐标;(2)若2,F为AD的中点,求AE与BF的交点I的坐标.解(1)设点D(m,n),因为,所以(m,n)(6,8)(4,1)(2,7),所以顶点D的坐标为(2,7).(2)设点I(x,y),则点F坐标为,由于2,故(xE2,yE7)2(6xE,8yE),所以E,由于,(x4,y1),所以(x4)3(y1),又,所以xy,解得x,y.则点I的坐标为(,).四、探究与拓展14.在ABC中,AB3,AC边上的中线BD,5,则AC的长为_.答案2解析设BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新沂教师面试题及答案
- 提高发明创造质量的专利指引试题及答案
- 浙江专用版2024-2025学年高中化学专题2化学反应速率与化学平衡本专题知识体系构建与核心素养解读学案选修4
- 药品市场营销与药学教育的结合试题及答案
- 系统规划与管理师实战经验分享试题及答案
- 药物配置技术与管理2024年考试试题及答案
- 初级会计师的知识更新策略与方法试题及答案
- 心理咨询师考试历史发展试题及答案
- 2024-2025学年高一政治寒假作业18面对经济全球化含解析新人教版
- 2024-2025学年一年级数学上册第五单元6-10的认识和加减法课时4连加连减教案新人教版
- 2024安徽省徽商集团有限公司招聘若干人笔试参考题库附带答案详解
- 2025年郑州铁路职业技术学院单招职业倾向性测试题库必考题
- 2024-2025学年人教版七年级生物下册知识点总结
- 声屏障行业跨境出海战略研究报告
- 2025年安阳职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 《4•15 第十个全民国家安全教育日》知识宣讲
- 事业单位人力资源管理绩效考核难题与对策分析
- 院内VTE防控课件
- 汽车智能系统知识
- 第8课 数据需要保护(教案)2023-2024学年四年级下册信息技术浙教版
- 具身智能机器人扩散策略Diffusion Policy基本原理与代码详解
评论
0/150
提交评论