寿阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
寿阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
寿阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
寿阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
寿阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷寿阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知复数z满足(3+4i)z=25,则=( )A34iB3+4iC34iD3+4i2 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆3 将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则的一个可能值为( )ABCD4 如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,),AOC=,若|BC|=1,则cos2sincos的值为( )ABCD5 设分别是中,所对边的边长,则直线与的位置关系是( )A平行 B 重合 C 垂直 D相交但不垂直6 函数y=|a|x(a0且a1)的图象可能是( )ABCD7 在复平面上,复数z=a+bi(a,bR)与复数i(i2)关于实轴对称,则a+b的值为( )A1B3C3D28 已知x0,y0, +=1,不等式x+y2m1恒成立,则m的取值范围( )A(,B(,C(,D(,9 与函数 y=x有相同的图象的函数是( )ABCD10已知,为锐角ABC的两个内角,xR,f(x)=()|x2|+()|x2|,则关于x的不等式f(2x1)f(x+1)0的解集为( )A(,)(2,+)B(,2)C(,)(2,+)D(,2)11下列图象中,不能作为函数y=f(x)的图象的是( )ABCD12已知命题“如果1a1,那么关于x的不等式(a24)x2+(a+2)x10的解集为”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A0个B1个C2个D4个二、填空题13已知实数,满足,目标函数的最大值为4,则_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力14如果实数满足等式,那么的最大值是 15已知含有三个实数的集合既可表示成,又可表示成,则 .16在中,已知,则此三角形的最大内角的度数等于_.17如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km18设全集_.三、解答题19已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标 20(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.21已知函数f(x)=sinx2sin2(1)求f(x)的最小正周期;(2)求f(x)在区间0,上的最小值22设集合A=x|0xm3,B=x|x0或x3,分别求满足下列条件的实数m的取值范围(1)AB=;(2)AB=B23已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值24在ABC中,cos2A3cos(B+C)1=0(1)求角A的大小;(2)若ABC的外接圆半径为1,试求该三角形面积的最大值寿阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B解析:(3+4i)z=25,z=34i=3+4i故选:B2 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.3 【答案】D【解析】解:将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+)的图象,=k+,即 =k+,kZ,则的一个可能值为,故选:D4 【答案】 A【解析】解:|BC|=1,点B的坐标为(,),故|OB|=1,BOC为等边三角形,BOC=,又AOC=,AOB=,cos()=,sin()=,sin()=cos=cos()=coscos()+sinsin() =+=,sin=sin()=sincos()cossin()=cos2sincos=(2cos21)sin=cossin=,故选:A【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题5 【答案】C【解析】试题分析:由直线与,则,所以两直线是垂直的,故选C. 1考点:两条直线的位置关系.6 【答案】D【解析】解:当|a|1时,函数为增函数,且过定点(0,1),因为011,故排除A,B当|a|1时且a0时,函数为减函数,且过定点(0,1),因为10,故排除C故选:D7 【答案】A【解析】解:z=a+bi(a,bR)与复数i(i2)=12i关于实轴对称,a+b=21=1,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题8 【答案】D【解析】解:x0,y0, +=1,不等式x+y2m1恒成立,所以(x+y)(+)=10+10=16,当且仅当时等号成立,所以2m116,解得m;故m的取值范围是(;故选D9 【答案】D【解析】解:A:y=的定义域0,+),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题10【答案】B【解析】解:,为锐角ABC的两个内角,可得+90,cos=sin(90)sin,同理cossin,f(x)=()|x2|+()|x2|,在(2,+)上单调递减,在(,2)单调递增,由关于x的不等式f(2x1)f(x+1)0得到关于x的不等式f(2x1)f(x+1),|2x12|x+12|即|2x3|x1|,化简为3x21x+80,解得x(,2);故选:B11【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x0时,有两个不同的y和x对应,所以不满足y值的唯一性所以B不能作为函数图象故选B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性12【答案】C【解析】解:若不等式(a24)x2+(a+2)x10的解集为”,则根据题意需分两种情况:当a24=0时,即a=2,若a=2时,原不等式为4x10,解得x,故舍去,若a=2时,原不等式为10,无解,符合题意;当a240时,即a2,(a24)x2+(a+2)x10的解集是空集,解得,综上得,实数a的取值范围是则当1a1时,命题为真命题,则命题的逆否命题为真命题,反之不成立,即逆命题为假命题,否命题也为假命题,故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,故选:C【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想二、填空题13【答案】【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线经过点时,取得最大值,所以,故14【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.15【答案】-1【解析】试题分析:由于,所以只能,所以。考点:集合相等。16【答案】【解析】考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键17【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为18【答案】7,9【解析】全集U=nN|1n10,A=1,2,3,5,8,B=1,3,5,7,9,(UA)=4,6,7,9 ,(UA)B=7,9,故答案为:7,9。三、解答题19【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,1分c=ea=,故b=,4分所以,椭圆E的方程为,即x2+3y2=56分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k25=0;7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=,x1x2=;8分=(x1m,y1)=(x1m,k(x1+1),=(x2m,y2)=(x2m,k(x2+1);=(k2+1)x1x2+(k2m)(x1+x2)+k2+m2=m2+2m,要使上式与k无关,则有6m+14=0,解得m=;存在点M(,0)满足题意13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题20【答案】(1);(2).考点:等差,等比数列通项公式,数列求和.21【答案】 【解析】解:(1)f(x)=sinx2sin2=sinx2=sinx+cosx=2sin(x+)f(x)的最小正周期T=2;(2)x0,x+,sin(x+)0,1,即有:f(x)=2sin(x+),2,可解得f(x)在区间0,上的最小值为:【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查22【答案】 【解析】解:A=x|0xm3,A=x|mxm+3,(1)当AB=时;如图:则,解得m=0,(2)当AB=B时,则AB,由上图可得,m3或m+30,解得m3或m323【答案】 【解析】解:()已知等式2bcosC=2ac,利用正弦定理化简得:2sinBcosC=2sinAsinC=2sin(B+C)sinC=2sinBcosC+2cosBsinCsinC,整理得:2cosBsinCsinC=0,sinC0,cosB=,则B=60;()ABC的面积为=acsinB=ac,解得:ac=4,又b=2,由余弦定理可得:22=a2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论