已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时规范练32二元一次不等式(组)与简单的线性规划问题基础巩固组1.若点(m,1)在不等式2x+3y-50所表示的平面区域内,则m的取值范围是()A.m1B.m1C.m12.(2018安徽六安舒城中学仿真(三),3)若x,y满足则z=x+2y的最大值为()A.8B.7C.2D.13.(2018广东阳春一中模拟,4)若实数x,y满足不等式组则z=x2+y2的取值范围是()A.,2B.0,2C.D.0,4.(2018吉林长春高三质监(二),6)已知动点M(x,y)满足线性条件定点N(3,1),则直线MN斜率的最大值为()A.1B.2C.3D.45.(2018山东临沂沂水一中三模,11)已知实数x,y满足的取值范围为()A.-3, B.-3, C.-3, D.-6.(2018宁夏银川四模,6)已知实数x,y满足的取值范围是()A.(0,1)B.(0,1C.1,+)D.,+7.(2018江西南昌联考,9)已知实数x,y满足:若目标函数z=ax+y(其中a为常数)仅在处取得最大值,则a的取值范围是()A.(-1,1)B.(-1,0)C.(0,1)D.-1,18.(2018江苏南通联考)已知实数x,y满足且(k-1)x-y+k-20恒成立,则实数k的最小值是.9.(2018福建三明质检,15)若直线ax+y=0将平面区域=划分成面积为12的两部分,则实数a的值等于.10.(2018云南红河一模,14)已知则z=2x-y的取值范围是.11.(2018北京海淀区二模,13)A,B两个居民小区的居委会欲组织本小区的中学生利用双休日去市郊的敬老院参加献爱心活动.两个校区每位同学的往返车费及服务老人的人数如下表:A小区B小区往返车费3元5元服务老人的人数5人3人根据安排,去敬老院的往返总车费不能超过37元,且B小区参加献爱心活动的同学比A小区的同学至少多1人,则接受服务的老人最多有人.综合提升组12.(2018江西南昌二模,6)已知点P(m,n)在不等式组表示的平面区域内,则实数m的取值范围是()A.-5,5B.-5,-5C.-5,1D.-5,113.(2018江西南昌测试八,5)已知f(x)=x2+ax+b,0f(1)1,9f(-3)12,则z=(a+1)2+(b+1)2的最小值为()A.B.C.D.114.(2018山西太原一模,7)已知不等式ax-2by2在平面区域(x,y)|x|1且|y|1上恒成立,则动点P(a,b)所形成平面区域的面积为()A.4B.8C.16D.3215.(2018江西赣州一联,14)已知平面区域:夹在两条斜率为-2的平行直线之间,则这两条平行直线间的最短距离为.创新应用组16.(2018河南一模,7)设不等式组表示的平面区域为D,若圆C:(x+1) 2+y2=r2(r0)不经过区域D上的点,则r的取值范围为()A.(0,)(,+)B.(,+)C.(0,)D.17.(2018湖北武汉调研,10)若x,y满足|x-1|+2|y+1|2,则M=2x2+y2-2x的最小值为()A.-2B.C.4D.-参考答案课时规范练32二元一次不等式(组)与简单的线性规划问题1.D由2m+3-50,得m1.2.B作出题设约束条件可行域,如图ABC内部(含边界),作直线l:x+2y=0,把直线l向上平移,z增加,当l过点B(3,2)时,z=3+22=7为最大值.故选B.3.B绘制不等式组表示的平面区域如图所示,目标函数表示坐标原点到可行域内点的距离的平方,则目标函数在点(0,0)处取得最小值:zmin=02+02=0,目标函数在点A(1,1)处取得最大值:zmax=12+12=2,故x2+y2的取值范围是0,2.故选B.4.C画出线性条件表示的可行域,由可得M(2,-2),由可行域可知当M取(2,-2)时,直线MN的斜率最大值为=3,故选C.5.A先作出不等式组对应的可行域,如图所示,解方程组得A,2,=表示可行域内的点(x,y)到原点的直线的斜率,所以当点在A点时,斜率最大=243=,没有最小值,无限接近直线3x+y-6=0的斜率-3,所以的取值范围为-3,.故选A.6.D的几何意义为可行域内的点到原点的距离,画出可行域,根据几何图像中的距离,结合点到直线的距离公式,即可求出范围.根据题意作出可行域:此区域为开放区域,所以距离可以无限大,由图像可知最近距离为原点到直线x+y-1=0的距离,所以由点到直线距离公式可得:最短距离d=22.故选D.7.A构造二次函数f(t)=t2-t,由函数的单调性可知,f(x)f(y),得到自变量离轴越远函数值越大,故-y,且0y,得到可行域为如图所示,直线斜率为-a,由图像可得到-1-a1即-1a1.故选A.8. 4画出表示的可行域,如图,直线(k-1)x-y+k-2=0过定点(-1,-1),若(k-1)x-y+k-20恒成立,可行域在直线下面,当直线过(0,2)时,k-1有最小值=3, k最小值为4,故答案为4.9.或-绘制不等式组表示的平面区域如图所示,由题意可知,该平面区域的面积:S=OBAC=12=1,直线ax+y=0的斜率为k=-a,当a0)表示以C(-1,0)为圆心,半径为r的圆,由图可得,当半径满足rCP时,圆C不经过区域D上的点,CM=,CP=,当0r时,圆C不经过区域D上的点,故选A.17.D令t=x,+2|y+1|2,作出可行域,如图所示.A(,0),B(-,-1),M=t2+y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年数字图书馆建设运营合同
- 2024年度跨境电商平台运营合作合同
- 2024年数据中心的租赁与运营合同
- 2024年房地产买卖合同协议全面解析
- DB4114T 192-2023 白术主要病虫害防治技术规程
- DB4105T 204-2022 大蒜套种朝天椒栽培技术规程
- 2024年教育投资与融资合同范本
- 押题10工业背景探究和区域工业发展-备战2023年高考地理之考前押大题(原卷版)
- 2024年数据存储场地租赁协议
- 2024年建筑工程施工合同:精准协作指南
- GB/T 16716.5-2024包装与环境第5部分:能量回收
- 2024年消防月全员消防安全知识专题培训-附20起典型火灾案例
- 10以内口算100道题共16套-直接打印版
- 防呆法(防错法)Poka-Yoke
- 田径运动会径赛裁判法PPT课件
- 学科带头人推荐报告
- 医学影像技术试题
- 单相接地电容电流的计算分析1
- (完整word版)A4红色稿纸模板.doc
- 群众问题诉求台帐.doc
- 高强Q460钢焊接作业指导书
评论
0/150
提交评论