2018年中考数学真题分类汇编(第一期)专题4一元一次方程及其应用试题(含解析).docx_第1页
2018年中考数学真题分类汇编(第一期)专题4一元一次方程及其应用试题(含解析).docx_第2页
2018年中考数学真题分类汇编(第一期)专题4一元一次方程及其应用试题(含解析).docx_第3页
2018年中考数学真题分类汇编(第一期)专题4一元一次方程及其应用试题(含解析).docx_第4页
2018年中考数学真题分类汇编(第一期)专题4一元一次方程及其应用试题(含解析).docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元一次方程及其应用一、选择题1 (2018湖北省武汉3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A2019B2018C2016D2013【分析】设中间数为x,则另外两个数分别为x1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解【解答】解:设中间数为x,则另外两个数分别为x1、x+1,三个数之和为(x1)+x+(x+1)=3x根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671673=848+1,2019不合题意,舍去;672=848,2016不合题意,舍去;671=837+7,三个数之和为2013故选:D【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键2(2018湖北恩施3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A不盈不亏B盈利20元C亏损10元D亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240两件衣服的进价后即可找出结论【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120x=20%x,y120=20%y,解得:x=100,y=150,120+120100150=10(元)故选:C【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键3 (2018甘肃白银,定西,武威3分) 已知,下列变形错误的是( )A. B. C. D. 【答案】B【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解【解答】由得,3a=2b,A. 由得,所以变形正确,故本选项错误;B. 由得3a=2b,所以变形错误,故本选项正确;C. 由可得,所以变形正确,故本选项错误;D.3a=2b变形正确,故本选项错误.故选B. 二.填空题(要求同上一.)1. (2018四川成都3分)已知 ,且 ,则 的值为_ 【答案】12 【考点】解一元一次方程,比例的性质 【解析】【解答】解:设 则a=6k,b=5k,c=4k 6k+5k-8k=6,解之:k=2a=62=12故答案为:12【分析】设 ,分别用含k的式子表示出a、b、c的值,再根据 ,建立关于k的方程,求出k的值,就可得出a的值。2. (2018湖南省常德3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可【解答】解:设报4的人心想的数是x,报1的人心想的数是10x,报3的人心想的数是x6,报5的人心想的数是14x,报2的人心想的数是x12,所以有x12+x=23,解得x=9故答案为9【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决本题还可以根据报2的人心想的数可以是6x,从而列出方程x12=6x求解3. (2018山东临沂3分)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0. =x,由0. =0.7777可知,l0x=7.7777,所以l0xx=7,解方程,得x=,于是得0. =将0.写成分数的形式是【分析】设0. =x,则36. =100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论【解答】解:设0. =x,则36. =100x,100xx=36,解得:x=故答案为:【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键三.解答题(要求同上一)1. (2018湖北省宜昌10分)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算第一年有40家工厂用乙方案治理,共使Q值降低了12经过三年治理,境内长江水质明显改善(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5求第一年用甲方案治理降低的Q值及a的值【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n的值即可得出关于a的等式求出答案【解答】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=(舍去),第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=1000.3=30,则(30a)+2a=39.5,解得:a=9.5,则Q=20.5设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=1000.3=30,解法一:(30a)+2a=39.5a=9.5x=20.5【点评】考查了一元二次方程和一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解2. (2018安徽分) 孙子算经中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.3. (2018广东7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x9)元/条,根据数量=总价单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200a)条B型芯片,根据总价=单价数量,即可得出关于a的一元一次方程,解之即可得出结论【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,x9=26答:A型芯片的单价为26元/条,B型芯片的单价为35元/条(2)设购买a条A型芯片,则购买(200a)条B型芯片,根据题意得:26a+35(200a)=6280,解得:a=80答:购买了80条A型芯片【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程 4(2018年四川省内江市)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍该商场有哪几种进货方式?该商场选择哪种进货方式,获得的利润最大?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;CE:一元一次不等式组的应用【分析】(1)设A、B两种型号的手机每部进价各是x元、y元,根据每部A型号手机的进价比每部B型号手机进价多500元以及商场用50000元共购进A型号手机10部,B型号手机20部列出方程组,求出方程组的解即可得到结果;(2)设A种型号的手机购进a部,则B种型号的手机购进(40a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;设A种型号的手机购进a部时,获得的利润为w元列出w关于a的函数解析式,根据一次函数的性质即可求解【解答】解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)设A种型号的手机购进a部,则B种型号的手机购进(40a)部,根据题意得:,解得:a30,a为解集内的正整数,a=27,28,29,30,有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;设A种型号的手机购进a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论