申扎县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
申扎县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
申扎县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
申扎县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
申扎县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷申扎县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,则直线l的方程为()Ax+y=0Bx+y=2Cxy=2Dxy=22 已知向量,(),且,点在圆上,则( )A B C D3 已知锐角ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=( )A10B9C8D54 若将函数y=tan(x+)(0)的图象向右平移个单位长度后,与函数y=tan(x+)的图象重合,则的最小值为( )ABCD5 在正方体ABCDA1B1C1D1中,点E为底面ABCD上的动点若三棱锥BD1EC的表面积最大,则E点位于( )A点A处B线段AD的中点处C线段AB的中点处D点D处6 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、,则( )A B C D7 已知向量,其中则“”是“”成立的()A充分而不必要条件 B必要而不充分条件 C充要条件 D既不充分又不必要条件8 已知定义在区间0,2上的函数y=f(x)的图象如图所示,则y=f(2x)的图象为( )ABCD9 设a,b为实数,若复数,则ab=( )A2B1C1D210设偶函数f(x)在0,+)单调递增,则使得f(x)f(2x1)成立的x的取值范围是( )A(,1)B(,)(1,+)C(,)D(,)(,+)11已知集合,全集,则( )(A) ( B ) (C) (D) 12已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x二、填空题13若函数f(x),g(x)满足:x(0,+),均有f(x)x,g(x)x成立,则称“f(x)与g(x)关于y=x分离”已知函数f(x)=ax与g(x)=logax(a0,且a1)关于y=x分离,则a的取值范围是14在正方形中,,分别是边上的动点,当时,则的取值范围为 【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力15某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)16已知函数f(x)=xm过点(2,),则m=17若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力18下列命题:函数y=sinx和y=tanx在第一象限都是增函数;若函数f(x)在a,b上满足f(a)f(b)0,函数f(x)在(a,b)上至少有一个零点;数列an为等差数列,设数列an的前n项和为Sn,S100,S110,Sn最大值为S5;在ABC中,AB的充要条件是cos2Acos2B;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强其中正确命题的序号是(把所有正确命题的序号都写上)三、解答题19全集U=R,若集合A=x|3x10,B=x|2x7,(1)求AB,(UA)(UB); (2)若集合C=x|xa,AC,求a的取值范围20如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长21(本小题满分12分)已知函数.(1)当时,讨论函数在区间上零点的个数;(2)证明:当,时,.22设定义在(0,+)上的函数f(x)=ax+b(a0)()求f(x)的最小值;()若曲线y=f(x)在点(1,f(1)处的切线方程为y=,求a,b的值23斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长24已知函数f(x)=,其中=(2cosx, sin2x),=(cosx,1),xR(1)求函数y=f(x)的单调递增区间;(2)在ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求ABC的面积申扎县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(2,2),圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,点(0,0)与(2,2)关于直线l对称,设直线l方程为y=kx+b,k=1且=k+b,解得k=1,b=2,故直线方程为xy=2,故选:D2 【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.3 【答案】D【解析】解:23cos2A+cos2A=23cos2A+2cos2A1=0,即cos2A=,A为锐角,cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c22bccosA,即49=b2+36b,解得:b=5或b=(舍去),则b=5故选D4 【答案】D【解析】解:y=tan(x+),向右平移个单位可得:y=tan(x)+=tan(x+)+k=k+(kZ),又0min=故选D5 【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥BD1EC,无论E在底面ABCD上的何位置,面BCD1 的面积为定值,要使三棱锥BD1EC的表面积最大,则侧面BCE、CAD1、BAD1 的面积和最大,而当E与A重合时,三侧面的面积均最大,E点位于点A处时,三棱锥BD1EC的表面积最大故选:A【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题6 【答案】A【解析】考点:棱锥的结构特征7 【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。故答案为:A8 【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当02x1即1x2时,f(2x)=2x当12x2即0x1时,f(2x)=1y=f(2x)=,根据一次函数的性质,结合选项可知,选项A正确故选A9 【答案】C【解析】解:,因此ab=1故选:C10【答案】A【解析】解:因为f(x)为偶函数,所以f(x)f(2x1)可化为f(|x|)f(|2x1|)又f(x)在区间0,+)上单调递增,所以|x|2x1|,即(2x1)2x2,解得x1,所以x的取值范围是(,1),故选:A11【答案】C【解析】 ,故选C12【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查二、填空题13【答案】(,+) 【解析】解:由题意,a1故问题等价于axx(a1)在区间(0,+)上恒成立构造函数f(x)=axx,则f(x)=axlna1,由f(x)=0,得x=loga(logae),xloga(logae)时,f(x)0,f(x)递增;0xloga(logae),f(x)0,f(x)递减则x=loga(logae)时,函数f(x)取到最小值,故有loga(logae)0,解得a故答案为:(,+)【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围14【答案】(,)上的点到定点的距离,其最小值为,最大值为,故的取值范围为15【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 16【答案】1 【解析】解:将(2,)代入函数f(x)得: =2m,解得:m=1;故答案为:1【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题17【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得18【答案】 【解析】解:函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,但是,因此不是单调递增函数;若函数f(x)在a,b上满足f(a)f(b)0,函数f(x)在(a,b)上至少有一个零点,正确;数列an为等差数列,设数列an的前n项和为Sn,S100,S110, =5(a6+a5)0, =11a60,a5+a60,a60,a50因此Sn最大值为S5,正确;在ABC中,cos2Acos2B=2sin(A+B)sin(AB)=2sin(A+B)sin(BA)0AB,因此正确;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确其中正确命题的序号是 【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题三、解答题19【答案】 【解析】解:(1)A=x|3x10,B=x|2x7,AB=3,7;AB=(2,10);(CUA)(CUB)=(,3)10,+);(2)集合C=x|xa,若AC,则a3,即a的取值范围是a|a320【答案】 【解析】解:()由题意,因为sinB=,所以cosB=又cosADC=,所以sinADC=所以sinBAD=sin(ADCB)=()=()在ABD中,由正弦定理,得,解得BD=故BC=15,从而在ADC中,由余弦定理,得AC2=9+2252315()=,所以AC=【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题21【答案】(1)当时,有个公共点,当时,有个公共点,当时,有个公共点;(2)证明见解析.【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得,构造函数,利用求出单调性可知在的最小值,根据原函数的单调性可讨论得零点个数;(2)构造函数,利用导数可判断的单调性和极值情况,可证明.1试题解析:当时,有0个公共点;当,有1个公共点;当有2个公共点.(2)证明:设,则,令,则,因为,所以,当时,;在上是减函数,当时,在上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22【答案】 【解析】解:()f(x)=ax+b2+b=b+2当且仅当ax=1(x=)时,f(x)的最小值为b+2()由题意,曲线y=f(x)在点(1,f(1)处的切线方程为y=,可得:f(1)=,a+b=f(x)=a,f(1)=a=由得:a=2,b=123【答案】 【解析】解:设直线l的倾斜解为,则l与y轴的夹角=90,cot=tan=2,sin=,|AB|=40线段A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论