已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 Basic Studying for Biomechanics 2 (Trigonometry) ( Trigonometric Ratio) (Trigonometric Function) ( Trigonometric Identities) ( Law of Sines) ( Law of Cosines) ? Contents ? vs. / ? degree VS. radian Angles add to 180 The angles of a triangle always add up to 180 44 6868 20 130 30 44 68 + 68 180 20 30 180 + 130 Right triangles We only care about right triangles A right triangle is one in which one of the angles is 90 Heres a right triangle: We call the longest side the hypotenuse We pick one of the other angles-not the right angle We name the other two sides relative to that angle Heres the right angle hypotenuse Heres the angle we are looking at adjacent opposite The Pythagorean Theorem If you square the length of the two shorter sides and add them, you get the square of the length of the hypotenuse adj2 + opp2 = hyp2 32 + 42 = 52, or 9 + 16 = 25 hyp = sqrt(adj2 + opp2) 5 = sqrt(9 + 16) 5-12-13 There are few triangles with integer sides that satisfy the Pythagorean formula 3-4-5 and its multiples (6-8-10, etc.) are the best known 5-12-13 and its multiples form another set 25 + 144 = 169 hyp adj opp Ratios Since a triangle has three sides, there are six ways to divide the lengths of the sides Each of these six ratios has a name (and an abbreviation) Three ratios are most used: sine = sin = opp / hyp cosine = cos = adj / hyp tangent = tan = opp / adj The other three ratios are redundant with these and can be ignored The ratios depend on the shape of the triangle (the angles) but not on the size hypotenuse adjacent opposite hypotenuse adjacent opposite Special Right Triangles 30 30 45 60 45 2 1 1 1 1 Using the ratios If you know the angle marked in red (call it A) and you know the length of the adjacent side, then tan A = opp / adj, so length of opposite side is given by opp = adj * tan A cos A = adj / hyp, so length of hypotenuse is given by hyp = adj / cos A hypotenuse adjacent opposite When solving oblique triangles, simply using trigonometric functions is not enough. You need The Law of Sines The Law of Cosines a2=b2+c2-2bc cosA b2=a2+c2-2ac cosB c2=a2+b2-2ab cosC It is useful to memorize these laws. They can be used to solve any triangle if enough measurements are given. a c b A B C The Six Trigonometric Ratios q q q q q q The Cosecant, Secant, and Cotangent of The Cosecant, Secant, and Cotangent of q q are the Reciprocals of are the Reciprocals of the Sine, Cosine,and Tangent of the Sine, Cosine,and Tangent of q.q. Solving a Problem with the Tangent Ratio 60 53 ft h = ? We know the angle and the We know the angle and the side adjacent to 60. We want to side adjacent to 60. We want to know the opposite side. Use theknow the opposite side. Use the tangent ratio:tangent ratio: 1 2 Why? Trigonometric Functions on a Rectangular Coordinate System x y q q Pick a point on the terminal ray and drop a perpendicular to the x-axis. (The Rectangular Coordinate Model)(The Rectangular Coordinate Model) Trigonometric Functions on a Rectangular Coordinate System x y q q Pick a point on the terminal ray and drop a perpendicular to the x-axis. r y x The adjacent side is x The opposite side is y The hypotenuse is labeled r This is called a REFERENCE TRIANGLE. Trigonometric Values for angles in Quadrants II, III and IV x y Pick a point on the terminal ray and drop a perpendicular to the x-axis. q y x r Trigonometric Values for angles in Quadrants II, III and IV x y Pick a point on the terminal ray and raise a perpendicular to the x-axis. q Trigonometric Values for angles in Quadrants II, III and IV x y Pick a point on the terminal ray and raise a perpendicular to the x-axis. q x r y Important! The is ALWAYS drawn to the x-axis Signs of Trigonometric Functions x y A A ll are positive in QI T Tan ( graph one cycle; then repeat the cycle over the interval. maxx-intminx-intmax 30-303 y = 3 cos x 20x (0, 3) ( , 0) ( , 0) ( , 3) ( , 3) 40 Amplitude The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. amplitude = |a| If |a| 1, the amplitude stretches the graph vertically. If 0 1, the amplitude shrinks the graph vertically. If a 1, the graph of the function is shrunk horizontally. y x period: 2 period: 4 42 y x y = cos (x) Graph y = f(-x) Use basic trigonometric identities to graph y = f (x) Example 1: Sketch the graph of y = sin (x). Use the identity sin (x) = sin x The graph of y = sin (x) is the graph of y = sin x reflected in the x-axis. Example 2: Sketch the graph of y = cos (x). Use the identity cos (x) = cos x The graph of y = cos (x) is identical to the graph of y = cos x. y x y = sin x y = sin (x) y = cos (x) 43 y x 0 202 0y = 2 sin 3x 0 x Example: y = 2 sin(-3x) Example: Sketch the graph of y = 2 sin (3x). Rewrite the function in the form y = a sin bx with b 0 amplitude: |a| = |2| = 2 Calculate the five key points. (0, 0) ( , 0) ( , 2) ( , -2) ( , 0) Use the identity sin ( x) = sin x: y = 2 sin (3x) = 2 sin 3x period: 22 3 = 44 The graph of y = A sin (Bx C) is obtained by horizontally shifting the graph of y = A sin Bx so that the starting point of the cycle is shifted from x = 0 to x = C/B. The number C/B is called the phase shift. amplitude = | A| period = 2 /B. x y Amplitude: | A| Period: 2/B y = A sin Bx Starting point: x = C/B The Graph of y = Asin(Bx - C) 45 Example Determine the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地下管网综合改造工程项目施工方案
- 交通事故现场勘查与分析
- 低碳建筑能效优化方案
- 小学语文习作单元的学习任务群教学策略
- 2025-2030全球陶瓷牙套市场消费需求趋势及未来趋势前景分析研究报告
- 2025-2030新能源汽车技术迭代产品竞争需求变化发展路径分析报告
- 2025-2030新能源汽车产业链从头重到尾整合与市场成败分析规划分析报告
- 2025-2030新能源汽车产业国内市场供需预测及政策建议报告
- 2025-2030新能源储能行业市场发展现状技术前沿投资评估规划研究报告
- 隐蔽工程验收影像流程制度
- 地震监测面试题目及答案
- 12S522混凝土模块式排水检查井图集
- 物业的2025个人年终总结及2026年的年度工作计划
- 交通警察道路执勤执法培训课件
- JJG 1205-2025直流电阻测试仪检定规程
- 十五五学校五年发展规划(2026-2030)
- 物流行业项目实施的协调措施
- 2025年上海市各区初三二模语文试题汇编《说明文阅读》
- 心衰患者的用药与护理
- 2025年结算工作总结
- 浙江省杭州市北斗联盟2024-2025学年高二上学期期中联考地理试题 含解析
评论
0/150
提交评论