全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平摆线与圆的渐开线1了解平摆线、圆的渐开线的生成过程,能导出它们的参数方程2在欣赏曲线美的同时,体会参数方程在曲线研究中的地位3体会“参数”思想在处理较为复杂问题时的优越性基础初探1平摆线(1)如图447所示,假设A为圆心,圆周上的定点为P,开始时位于O处,圆(半径为r)在直线上滚动时,点P绕圆心做圆周运动,转过(弧度)角后,圆与直线相切于B,线段OB的长等于的长,即OBr.这就是圆周上的定点P在圆A沿直线滚动过程中满足的几何条件我们把点P的轨迹叫做平摆线,简称摆线,又叫旋轮线图447(2)以定直线为x轴,点O为原点建立直角坐标系,则定点P(x,y)的参数方程为(为参数)2圆的渐开线有一条钢丝紧箍在一个半径为r的圆盘上,在钢丝的外端系上一支铅笔,逐渐撒开钢丝,并使撒开的部分成为圆盘的切线,我们把笔尖画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆思考探究1用参数法求曲线的轨迹方程的步骤是什么?【提示】用参数法求曲线的轨迹方程,其步骤主要有三步:选参、用参、消参其中关键是选参,若题目没有明确要求化为普通方程(或需判断曲线的形状和位置),则可以用曲线的参数方程作为答案2圆的渐开线的参数方程中的参数的几何意义是什么?【提示】根据渐开线的定义和求解参数方程的过程,可知其中的字母r是指基圆的半径,而参数是指绳子外端运动时,半径OB相对于Ox转过的角度,如图,其中的AOB即是角.显然点P由参数惟一确定在我们解决有关问题时可以适当利用其几何意义,把点的坐标转化为与三角函数有关的问题,使求解过程更加简单质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_解惑:_疑问2:_解惑:_疑问3:_解惑:_摆线已知一个圆的摆线过一定点(1,0),请写出该摆线的参数方程【自主解答】根据圆的摆线的参数方程的表达式(为参数)可知,只需求出其中的r,也就是说,摆线的参数方程由圆的半径惟一来确定,因此只需把点(1,0)代入参数方程求出r值再代入参数方程的表达式令r(1cos )0可得cos 1,所以2k(kZ)代入可得xr(2ksin 2k)1.所以r.又根据实际情况可知r是圆的半径,故r0.所以,应有k0且kZ,即kN.所以,所求摆线的参数方程是(其中为参数,kN)再练一题1已知一个圆的平摆线过一定点(2,0),请写出该圆的半径最大时该平摆线的参数方程【解】令y0,可得r(1cos )0,由于r0,即得cos 1,所以2k(kZ)代入xr(sin ),得xr(2ksin 2k)又因为x2,所以r(2ksin 2k)2,即得r(kN)易知,当k1时,r取最大值为.代入即可得圆的平摆线的参数方程为(为参数).圆的渐开线已知圆的渐开线的参数方程(为参数)求出该渐开线的基圆的方程,当参数取时,求对应曲线上点的坐标【思路探究】由圆的渐开线的参数方程形式可得r3,把代入即得对应的坐标【自主解答】,半径为3.此渐开线的基圆方程为x2y29.把代入参数方程得即曲线上点的坐标为(,3)圆的渐开线参数方程其中为参数再练一题2已知圆的直径为2,其渐开线的标准参数方程对应的曲线上两点A、B对应的参数分别是和,求A、B两点的距离【导学号:98990038】【解】根据条件可知圆的半径是1,所以对应的渐开线参数方程是(为参数),分别把和代入,可得A、B两点的坐标分别为A(,),B(,1)那么,根据两点之间的距离公式可得A、B两点的距离为AB.即A、B两点之间的距离为.1若某圆的渐开线方程是(为参数),则此圆的方程是_,对应0的点的坐标是_,对应的点是_【解析】圆的方程为x2y21,0的点的坐标是(1,0),对应的点的坐标是(,1)【答案】x2y21(1,0)(,1)2摆线(02)与直线y1交点的直角坐标为_【导学号:98990039】【解析】当y1时,有2(1cos )1,cos ,又02,或,当时,x;当时,x.【答案】(,1),(,1)3如图448,ABCD是边长为1的正方形,曲线AEFGH叫做“正方形的渐开线”,其中弧AE、EF、FG、GH的圆心依次按B、C、D、A循环,它们依次相连接,则曲线AEFGH长是_图448【解析】2 ,相加得5.【答案】54已知一个圆的参数方程为(为参数)那么圆的平摆线方程中与参数对应的点A与点B之间的距离为_【解析】根据圆的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人消费分期借款合同规范4篇
- 二零二五年度金融科技创新项目合作协议6篇
- 二零二五年度银政合作金融服务创新合同3篇
- 二零二五年度防火门窗品牌代理合作协议3篇
- 潮州2024年广东潮州市科学技术局属下事业单位招聘10人(第二轮)笔试历年参考题库附带答案详解
- 漯河2024年河南漯河市文学艺术界联合会所属事业单位人才引进笔试历年参考题库附带答案详解
- 2025版无子女离婚协议书编制技巧与签订后的执行3篇
- 湖南2025年湖南农业大学-岳麓山实验室博士后招聘笔试历年参考题库附带答案详解
- 二零二五年度橱柜安装与厨房改造一体化服务合同4篇
- 温州浙江温州市医疗保险管理中心招聘编外人员4人笔试历年参考题库附带答案详解
- 高考满分作文常见结构完全解读
- 专题2-2十三种高考补充函数归类(讲练)
- 理光投影机pj k360功能介绍
- 六年级数学上册100道口算题(全册完整版)
- 八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版
- 帕萨特B5维修手册及帕萨特B5全车电路图
- 系统解剖学考试重点笔记
- 小学五年级解方程应用题6
- 云南省地图含市县地图矢量分层地图行政区划市县概况ppt模板
- 年月江西省南昌市某综合楼工程造价指标及
- 作物栽培学课件棉花
评论
0/150
提交评论