莲花县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
莲花县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
莲花县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
莲花县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
莲花县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

莲花县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)2 在正方体ABCDABCD中,点P在线段AD上运动,则异面直线CP与BA所成的角的取值范围是( )A0B0C0D03 2sin 80的值为( )A1 B1C2 D24 已知等比数列an的第5项是二项式(x+)4展开式的常数项,则a3a7( )A5B18C24D365 设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D6 将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD7 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD8 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D309 函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D910已知f(x)=ax3+bx+1(ab0),若f(2016)=k,则f(2016)=( )AkBkC1kD2k11已知,其中i为虚数单位,则a+b=( )A1B1C2D312已知A,B是以O为圆心的单位圆上的动点,且|=,则=( )A1B1CD二、填空题13若函数y=ln(2x)为奇函数,则a=14函数y=1(xR)的最大值与最小值的和为2 15已知定义在R上的奇函数满足,且时,则的值为 16已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 17在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=18若正数m、n满足mnmn=3,则点(m,0)到直线xy+n=0的距离最小值是三、解答题19在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由20已知双曲线过点P(3,4),它的渐近线方程为y=x(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1|PF2|=41,求F1PF2的余弦值21设an是公比小于4的等比数列,Sn为数列an的前n项和已知a1=1,且a1+3,3a2,a3+4构成等差数列(1)求数列an的通项公式;(2)令bn=lna3n+1,n=12求数列bn的前n项和Tn22设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 23若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值24已知数列an的前n项和为Sn,首项为b,若存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立()求数列an的通项公式;()问是否存在一组非零常数a,b,使得Sn成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由莲花县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题2 【答案】D【解析】解:A1BD1C,CP与A1B成角可化为CP与D1C成角AD1C是正三角形可知当P与A重合时成角为,P不能与D1重合因为此时D1C与A1B平行而不是异面直线,0故选:D3 【答案】【解析】解析:选A.2 sin 802cos 101,选A.4 【答案】D【解析】解:二项式(x+)4展开式的通项公式为Tr+1=x42r,令42r=0,解得r=2,展开式的常数项为6=a5,a3a7=a52=36,故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题5 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 6 【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档7 【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B8 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A9 【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题10【答案】D【解析】解:f(x)=ax3+bx+1(ab0),f(2016)=k,f(2016)=20163a+2016b+1=k,20163a+2016b=k1,f(2016)=20163a2016b+1=(k1)+1=2k故选:D【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用11【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题12【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且|=,即有|2+|2=|2,可得OAB为等腰直角三角形,则,的夹角为45,即有=|cos45=1=1故选:B【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键二、填空题13【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:414【答案】2【解析】解:设f(x)=,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0将函数f(x)向上平移一个单位得到函数y=1的图象,所以此时函数y=1(xR)的最大值与最小值的和为2故答案为:2【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键15【答案】【解析】1111试题分析:,所以考点:利用函数性质求值16【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键17【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题18【答案】 【解析】解:点(m,0)到直线xy+n=0的距离为d=,mnmn=3,(m1)(n1)=4,(m10,n10),(m1)+(n1)2,m+n6,则d=3故答案为:【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题三、解答题19【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定值111(2)设存在直线:满足条件,则的中点,因此以为直径圆的半径,点到直线的距离,所以所截弦长为当,即时,弦长为定值2,这时直线方程为考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.20【答案】 【解析】解:(1)设双曲线的方程为y2x2=(0),代入点P(3,4),可得=16,所求求双曲线的标准方程为(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,又由双曲线的几何性质知|d1d2|=2a=6,d12+d222d1d2=36即有d12+d22=36+2d1d2=118,又|F1F2|=2c=10,|F1F2|2=100=d12+d222d1d2cosF1PF2cosF1PF2=【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求F1PF2的余弦值着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题21【答案】 【解析】解:(1)设等比数列an的公比为q4,a1+3,3a2,a3+4构成等差数列23a2=a1+3+a3+4,6q=1+7+q2,解得q=2(2)由(1)可得:an=2n1bn=lna3n+1=ln23n=3nln2数列bn的前n项和Tn=3ln2(1+2+n)=ln222【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键23【答案】 【解析】解:由题意可得:当a1时,函数f(x)在区间1,2上单调递增,f(2)f(1)=a2a=a,解得a=0(舍去),或a=当 0a1时,函数f(x)在区间1,2上单调递减,f(1)f(2)=aa2=,解得a=0(舍去),或a=故a的值为或【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题24【答案】 【解析】解:()数列an的前n项和为Sn,首项为b,存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立,由题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论