市南区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
市南区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
市南区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
市南区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
市南区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

市南区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图,在正四棱锥SABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:EPBD;EPAC;EP面SAC;EP面SBD中恒成立的为( )ABCD2 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力3 函数f(x)=tan(2x+),则( )A函数最小正周期为,且在(,)是增函数B函数最小正周期为,且在(,)是减函数C函数最小正周期为,且在(,)是减函数D函数最小正周期为,且在(,)是增函数4 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A9B11C13D155 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A BC D6 已知偶函数f(x)满足当x0时,3f(x)2f()=,则f(2)等于( )ABCD7 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称8 函数f(x)=x2+,则f(3)=( )A8B9C11D109 (6a3)的最大值为( )A9BC3D10函数f(x)=xsinx的图象大致是( )ABC D11若函数则的值为( )A5 B C D212定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D12二、填空题13利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|ab|2发生的概率是14已知sin+cos=,且,则sincos的值为15已知,则函数的解析式为_.16已知面积为的ABC中,A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为17在平面直角坐标系中,记,其中为坐标原点,给出结论如下:若,则;对平面任意一点,都存在使得;若,则表示一条直线;若,且,则表示的一条线段且长度为其中所有正确结论的序号是 18已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 三、解答题19(本小题满分10分)选修45:不等式选讲已知函数(I)若,使得不等式成立,求实数的最小值;()在(I)的条件下,若正数满足,证明:.20已知函数f(x)=sin(x+)+1(0,)的最小正周期为,图象过点P(0,1)()求函数f(x)的解析式;()设函数 g(x)=f(x)+cos2x1,将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值21(本小题满分10分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.22【常熟中学2018届高三10月阶段性抽测(一)】已知函数.(1)若函数是单调递减函数,求实数的取值范围;(2)若函数在区间上既有极大值又有极小值,求实数的取值范围.23(本题满分12分)如图1在直角三角形ABC中,A=90,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将CDE沿DE折起,使点A在平面CDE内的射影恰好为M(I)求AM的长;()求面DCE与面BCE夹角的余弦值24如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0)(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由 市南区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN在中:由异面直线的定义可知:EP与BD是异面直线,不可能EPBD,因此不正确;在中:由正四棱锥SABCD,可得SO底面ABCD,ACBD,SOACSOBD=O,AC平面SBD,E,M,N分别是BC,CD,SC的中点,EMBD,MNSD,而EMMN=M,平面EMN平面SBD,AC平面EMN,ACEP故正确在中:由同理可得:EM平面SAC,若EP平面SAC,则EPEM,与EPEM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直即不正确在中:由可知平面EMN平面SBD,EP平面SBD,因此正确故选:A【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养2 【答案】D【解析】由已知得,故,故选D3 【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+(,),函数f(x)=tan(2x+)单调递增,故选:D4 【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答5 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。故答案为:B6 【答案】D【解析】解:当x0时,3f(x)2f()=,3f()2f(x)=,3+2得:5f(x)=,故f(x)=,又函数f(x)为偶函数,故f(2)=f(2)=,故选:D【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x0时,函数f(x)的解析式,是解答的关键7 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C8 【答案】C【解析】解:函数=,f(3)=32+2=11故选C9 【答案】B【解析】解:令f(a)=(3a)(a+6)=+,而且6a3,由此可得函数f(a)的最大值为,故(6a3)的最大值为=,故选B【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题10【答案】A【解析】解:函数f(x)=xsinx满足f(x)=xsin(x)=xsinx=f(x),函数的偶函数,排除B、C,因为x(,2)时,sinx0,此时f(x)0,所以排除D,故选:A【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力11【答案】D111【解析】试题分析:.考点:分段函数求值12【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C二、填空题13【答案】 【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是66=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|ab|2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|ab|2发生的概率是P=故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键14【答案】 【解析】解:sin+cos=,sin2+2sincos+cos2=,2sincos=1=,且sincos,sincos=故答案为:15【答案】【解析】试题分析:由题意得,令,则,则,所以函数的解析式为.考点:函数的解析式.16【答案】 【解析】解:AD取最小时即ADBC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(2x,0),B(x,0)(其中x0),则=(2x,y),=(x,y),ABC的面积为,=18,=cos=9,2x2+y2=9,ADBC,S=xy=3,由得:x=,故答案为:【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识17【答案】【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力由得,错误;与不共线,由平面向量基本定理可得,正确;记,由得,点在过点与平行的直线上,正确;由得,与不共线,正确;设,则有,且,表示的一条线段且线段的两个端点分别为、,其长度为,错误18【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键三、解答题19【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力 20【答案】 【解析】解:()函数f(x)=sin(x+)+1(0,)的最小正周期为,=2,又由函数f(x)的图象过点P(0,1),sin=0,=0,函数f(x)=sin2x+1;()函数 g(x)=f(x)+cos2x1=sin2x+cos2x=sin(2x+),将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin2(x)+=sin(2x),x(0,m),2x(,2m),又由h(x)在区间(0,m)内是单调函数,2m,即m,即实数m的最大值为【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键21【答案】(1)或;(2).【解析】试题解析:(1)当时,当时,由得,解得;当时,无解;当时,由得,解得,的解集为或.(2),当时,有条件得且,即,故满足条件的的取值范围为.考点:1、绝对值不等式的解法;2、不等式恒成立问题.22【答案】(1);(2).【解析】试题分析:(1)原问题等价于对恒成立,即对恒成立,结合均值不等式的结论可得;(2)由题意可知在上有两个相异实根,结合二次函数根的分布可得实数的取值范围是.试题解析:(2)函数在上既有极大值又有极小值,在上有两个相异实根,即在上有两个相异实根,记,则,得,即.23【答案】解:(I)由已知可得AMCD,又M为CD的中点,; 3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,5分设为面BCE的法向量,由可得=(1,2,),cos,=,面DCE与面BCE夹角的余弦值为 4分24【答案】 【解析】解:(1)圆弧 C1所在圆的方程为 x2+y2=169,令x=5,解得M(5,12),N(5,12)2分则直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论