孟州市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
孟州市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
孟州市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
孟州市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
孟州市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

孟州市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列哪组中的两个函数是相等函数( )A BC D2 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A27种B35种C29种D125种3 在等差数列中,公差,为的前项和.若向量,且,则的最小值为( )A B C D【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力4 如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是( ) A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.5 己知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+2,那么不等式2f(x)10的解集是( )AB或CD或6 与函数 y=x有相同的图象的函数是( )ABCD7 已知双曲线kx2y2=1(k0)的一条渐近线与直线2x+y3=0垂直,则双曲线的离心率是( )ABC4D8 已知函数f(x)=x3+(1b)x2a(b3)x+b2的图象过原点,且在原点处的切线斜率是3,则不等式组所确定的平面区域在x2+y2=4内的面积为( )ABCD29 已知i是虚数单位,则复数等于( )A +iB +iCiDi10学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种11若ab,则下列不等式正确的是( )ABa3b3Ca2b2Da|b|12如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离二、填空题13已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 14某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为升15若的展开式中含有常数项,则n的最小值等于 16若复数是纯虚数,则的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力17在中,有等式:;.其中恒成立的等式序号为_.18一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为三、解答题19(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)20某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?21已知函数,(1)当时,求函数的单调区间;(2)若关于的不等式在上有解,求实数的取值范围22在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值。23 24如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为60孟州市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D111【解析】考点:相等函数的概念.2 【答案】 B【解析】排列、组合及简单计数问题【专题】计算题【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,当三台设备都给一个社区,当三台设备分为1和2两份分给2个社区,当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:当三台设备都给一个社区时,有5种结果,当三台设备分为1和2两份分给2个社区时,有2C52=20种结果,当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,不同的分配方案有5+20+10=35种结果;故选B【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素3 【答案】A 【解析】4 【答案】D. 第卷(共110分)5 【答案】B【解析】解:因为y=f(x)为奇函数,所以当x0时,x0,根据题意得:f(x)=f(x)=x+2,即f(x)=x2,当x0时,f(x)=x+2,代入所求不等式得:2(x+2)10,即2x3,解得x,则原不等式的解集为x;当x0时,f(x)=x2,代入所求的不等式得:2(x2)10,即2x5,解得x,则原不等式的解集为0x,综上,所求不等式的解集为x|x或0x故选B6 【答案】D【解析】解:A:y=的定义域0,+),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题7 【答案】A【解析】解:由题意双曲线kx2y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=x故=,k=,可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证8 【答案】 B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2则f(x)=x3x2+ax,函数的导数f(x)=x22x+a,因为原点处的切线斜率是3,即f(0)=3,所以f(0)=a=3,故a=3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求kOB=,kOA=,tanBOA=1,BOA=,扇形的圆心角为,扇形的面积是圆的面积的八分之一,圆x2+y2=4在区域D内的面积为4=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键9 【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题10【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想11【答案】B【解析】解:ab,令 a=1,b=2,代入各个选项检验可得:=1, =,显然A不正确a3=1,b3=6,显然 B正确 a2 =1,b2=4,显然C不正确a=1,|b|=2,显然D 不正确故选 B【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法12【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力二、填空题13【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,z=log4(2x+y+4)最大是,故答案为:【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题14【答案】8升 【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量486=8故答案是:815【答案】5【解析】解:由题意的展开式的项为Tr+1=Cnr(x6)nr()r=Cnr=Cnr令=0,得n=,当r=4时,n 取到最小值5故答案为:5【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值16【答案】【解析】由题意知,且,所以,则.17【答案】【解析】 试题分析:对于中,由正弦定理可知,推出或,所以三角形为等腰三角形或直角三角形,所以不正确;对于中,即恒成立,所以是正确的;对于中,可得,不满足一般三角形,所以不正确;对于中,由正弦定理以及合分比定理可知是正确,故选选1考点:正弦定理;三角恒等变换18【答案】300 【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15=300故答案为:300【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目三、解答题19【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题. 20【答案】 【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,=10,且相隔9小时达到一次最大值说明周期为12,因此,故(0t24)(2)要想船舶安全,必须深度f(t)11.5,即,解得:12k+1t5+12k kZ又0t24当k=0时,1t5;当k=1时,13t17;故船舶安全进港的时间段为(1:005:00),(13:0017:00)【点评】本题主要考查三角函数知识的应用问题解决本题的关键在于求出函数解析式求三角函数的解析式注意由题中条件求出周期,最大最小值等21【答案】()的单调递增区间是和,单调递减区间为;()【解析】试题分析:() 时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;() 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围试题解析:(1)当时,所以,由,得或,所以函数的单调递减区间为(2)要使在上有解,只要在区间上的最小值小于等于0因为,令,得,1 考点:导数与函数的单调性;分类讨论思想 22【答案】(1)点P在直线上(2)【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(2)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为,23【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5,15,(15,25,(25,35,(35,45,由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5,15内的小球个数为X,求X的分布列和数学期望(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差【专题】概率与统计【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可(2)XB(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可【解析】解:(1)由题意得,(0.02+0.032+a+0.018)10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.210+0.3220+0.330+0.1840=24.6(克)故估计盒子中小球重量的平均值约为24.6克(2)利用样本估计总体,该盒子中小球的重量在5,15内的0.2;则XB(3,),X=0,1,2,3;P(X=0)=()3=;P(X=1)=()2=;P(X=2)=()()2=;P(X=3)=()3=,X的分布列为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论