邵武市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
邵武市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
邵武市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
邵武市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
邵武市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

邵武市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数,函数,其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD2 已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A2BCD43 设函数f(x)的定义域为A,若存在非零实数l使得对于任意xI(IA),有x+lA,且f(x+l)f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为( )A0a1BaC1a1D2a24 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力5 将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则的一个可能值为( )ABCD6 下列各组函数中,表示同一函数的是( )Ay=1,y=x0By=,y=Cy=x,y=Dy=|x|,t=()27 若函数的定义域是,则函数的定义域是( )A B C D8 若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )A2tB2tC2tD2t9 已知是虚数单位,若复数()的实部与虚部相等,则( )A B C D 10已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力11函数f(x)=2x的零点个数为( )A0B1C2D312给出下列命题:在区间(0,+)上,函数y=x1,y=,y=(x1)2,y=x3中有三个是增函数;若logm3logn30,则0nm1;若函数f(x)是奇函数,则f(x1)的图象关于点A(1,0)对称;若函数f(x)=3x2x3,则方程f(x)=0有2个实数根其中假命题的个数为( )A1B2C3D4二、填空题13如图,长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是 14设满足约束条件,则的最大值是_15函数f(x)=(x3)的最小值为16 设函数,有下列四个命题:若对任意,关于的不等式恒成立,则;若存在,使得不等式成立,则;若对任意及任意,不等式恒成立,则;若对任意,存在,使得不等式成立,则其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.17方程(x+y1)=0所表示的曲线是18抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分已知P(400X450)=0.3,则P(550X600)=三、解答题19(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线(1)求证:AD;(2)若A120,AD,求ABC的面积20等差数列an的前n项和为Sna3=2,S8=22(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn21过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程22已知函数f(x)=loga(x2+2),若f(5)=3;(1)求a的值; (2)求的值; (3)解不等式f(x)f(x+2)23已知函数上为增函数,且(0,),mR(1)求的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)g(x0)成立,求m的取值范围 24(本题满分15分)正项数列满足,(1)证明:对任意的,;(2)记数列的前项和为,证明:对任意的,【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.邵武市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键2 【答案】 C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(aa1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2F1MF2=,由余弦定理可得4c2=(r1)2+(r2)22r1r2cos,在椭圆中,化简为即4c2=4a23r1r2,即=1,在双曲线中,化简为即4c2=4a12+r1r2,即=1,联立得, +=4,由柯西不等式得(1+)(+)(1+)2,即(+)24=,即+,当且仅当e1=,e2=时取等号即取得最大值且为故选C【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大3 【答案】 B【解析】解:定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2=图象如图,f(x)为R上的1高调函数,当x0时,函数的最大值为a2,要满足f(x+l)f(x),1大于等于区间长度3a2(a2),13a2(a2),a故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题4 【答案】B【解析】5 【答案】D【解析】解:将y=cos(2x+)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+)的图象,=k+,即 =k+,kZ,则的一个可能值为,故选:D6 【答案】C【解析】解:A中的两个函数y=1,y=x0,定义域不同,故不是同一个函数B中的两个函数定义域不同,故不是同一个函数C中的两个函数定义域相同,y=x,y=x,对应关系一样,故是同一个函数D中的两个函数定义域不同,故不是同一个函数综上,只有C中的两个函数是同一个函数故选:C7 【答案】B 【解析】8 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(2,1),则由图象知A,B两点在直线两侧和在直线上即可,即2(t+2)+t2(t+1)+3(t+2)+t0,即(3t+4)(2t+4)0,解得2t,即实数t的取值范围为是2,故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键综合性较强,属于中档题9 【答案】A考点:复数运算10【答案】D【解析】,故选D.11【答案】C【解析】解:易知函数的定义域为x|x1,0,函数在(,1)和(1,+)上都是增函数,又0,f(0)=1(2)=30,故函数在区间(4,0)上有一零点;又f(2)=44=0,函数在(1,+)上有一零点0,综上可得函数有两个零点故选:C【点评】本题考查函数零点的判断解题关键是掌握函数零点的判断方法利用函数单调性确定在相应区间的零点的唯一性属于中档题12【答案】 A【解析】解:在区间(0,+)上,函数y=x1,是减函数函数y=为增函数函数y=(x1)2在(0,1)上减,在(1,+)上增函数y=x3是增函数有两个是增函数,命题是假命题;若logm3logn30,则,即lgnlgm0,则0nm1,命题为真命题;若函数f(x)是奇函数,则其图象关于点(0,0)对称,f(x1)的图象关于点A(1,0)对称,命题是真命题;若函数f(x)=3x2x3,则方程f(x)=0即为3x2x3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题为真命题假命题的个数是1个故选:A【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题二、填空题13【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(1,0,1),=(1,1,1),=1+0+1=0,A1EGF,异面直线A1E与GF所成的角的余弦值为0故答案为:014【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划15【答案】12 【解析】解:因为x3,所以f(x)0由题意知: =令t=(0,),h(t)=t3t2因为 h(t)=t3t2 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)(0,由h(t)=f(x)=12故答案为:1216【答案】【解析】17【答案】两条射线和一个圆 【解析】解:由题意可得x2+y240,表示的区域是以原点为圆心的圆的外部以及圆上的部分由方程(x+y1)=0,可得x+y1=0,或 x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆【点评】本题主要考查直线和圆的方程的特征,属于基础题18【答案】0.3【解析】离散型随机变量的期望与方差【专题】计算题;概率与统计【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550600)【解答】解:某校高三学生成绩(总分750分)近似服从正态分布,平均成绩为500分,正态分布曲线的对称轴为x=500,P(400450)=0.3,根据对称性,可得P(550600)=0.3故答案为:0.3【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键三、解答题19【答案】【解析】解:(1)证明:D是BC的中点,BDDC.法一:在ABD与ACD中分别由余弦定理得c2AD22ADcosADB,b2AD22ADcosADC,得c2b22AD2,即4AD22b22c2a2,AD.法二:在ABD中,由余弦定理得AD2c22ccos Bc2ac,AD.(2)A120,AD,由余弦定理和正弦定理与(1)可得a2b2c2bc,2b22c2a219,联立解得b3,c5,a7,ABC的面积为Sbc sin A35sin 120.即ABC的面积为.20【答案】 【解析】解:(1)设等差数列an的公差为d,a3=2,S8=22,解得,an的通项公式为an=1+(n1)=(2)bn=,Tn=2+=2=21【答案】 【解析】解:由题意可知过焦点的直线方程为y=x,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2抛物线的方程为y2=4x【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题22【答案】 【解析】解:(1)f(5)=3,即loga27=3解锝:a=3(2)由(1)得函数,则=(3)不等式f(x)f(x+2),即为化简不等式得函数y=log3x在(0,+)上为增函数,且的定义域为Rx2+2x2+4x+6即4x4,解得x1,所以不等式的解集为:(1,+)23【答案】 【解析】解:(1)函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论